【摘要】導數(shù)應用第四章§2導數(shù)在實際問題中的應用最大值、最小值問題第2課時生活中的優(yōu)化問題舉例第四章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習能利用導數(shù)知識解決實際生活中的利潤最大、效率最高、用料最省等最優(yōu)化問題.,我們經常遇到面積、體積最大,周長最小,利
2024-11-21 08:43
【摘要】導數(shù)應用第四章§2導數(shù)在實際問題中的應用最大值、最小值問題第1課時函數(shù)的最大值與最小值第四章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導數(shù)求某定義域上函數(shù)的最值.f(x)的最大值為_____,最小值為
2024-11-20 23:22
【摘要】【成才之路】2021-2021學年高中數(shù)學最大值、最小值問題第2課時練習北師大版選修1-1一、選擇題1.將數(shù)8拆分為兩個非負數(shù)之和,使其立方之和為最小,則分法為()A.2和6B.4和4C.3和5D.以上都不對[答案]B[解析]設一個數(shù)為x,則另一個數(shù)為8-x,則y=x3
2024-12-02 14:03
【摘要】【成才之路】2021-2021學年高中數(shù)學最大值、最小值問題第1課時練習北師大版選修1-1一、選擇題1.函數(shù)y=x-sinx,x∈??????π2,π的最大值是()A.π-1B.π2-1C.πD.π+1[答案]C[解析]f′(x)=1-cosx≥0,
2024-12-02 19:11
【摘要】最大值、最小值問題(二)雙基達標?限時20分鐘?1.將長度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯解析設一段長為x,則另一段為8-x,其中0x8.設y=x3+(8-x)3,則y′=3x2-
2024-12-07 00:13
【摘要】【成才之路】2021-2021學年高中數(shù)學第3章2第2課時最大值、最小值問題課時作業(yè)北師大版選修2-2一、選擇題1.函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為()A.239B.229C.329D.38[答案]A[解析]f(x)=x-x3,f′(
2024-12-09 06:27
【摘要】最大值、最小值問題學習目標:理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習慣,提高應用知識解決實際問題的能力.學習重點:求函數(shù)的最值及求實際問題的最值.學習難點:求實際問題的最值.掌握求最值的方法關鍵是嚴格套用求最值的步驟,突破難點要把實際問題“數(shù)學化”,即建立數(shù)學模型.學
2024-12-09 06:35
【摘要】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學最大值與最小值課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=4x-x4在[-1,2]上的最大值是________.【解析】f′(x)=4-4x3,令f′(x)=0得x=1,又當x1時,f′(x)0,x1時
2024-12-08 18:01
【摘要】第3課時函數(shù)的最大值與最小值,了解其與函數(shù)極值的區(qū)別與聯(lián)系.[a,b]上連續(xù)的函數(shù)f(x)的最大值和最小值的方法和步驟.如圖,設鐵路線AB=50km,點C處與B之間的距離為10km,現(xiàn)將貨物從A運往C,已知1km鐵路費用為2元,1km公路費用為4元,在AB上M處修筑公
2024-11-23 23:14
【摘要】最大值與最小值一般地,設函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-22 08:47
【摘要】最大值與最小值一般地,設函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點
2024-11-23 13:08
【摘要】第三章導數(shù)及其應用第10課時函數(shù)的最大值與最小值教學目標:;和步驟.教學重點:利用導數(shù)求函數(shù)的最大值和最小值的方法教學難點:函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學過程:Ⅰ.問題情境Ⅱ.建構數(shù)學:::
2024-11-23 17:30
【摘要】xX2oaX3bx1y函數(shù)的最大與最小值(5月8日)教學目標:1、使學生掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲?;2、使學生掌握用導數(shù)求函數(shù)的極值及最值的方法教學重點:掌握用導數(shù)求函數(shù)的極值及最值的方法教學難點:提高“用導數(shù)求函數(shù)的極值及
2024-12-12 01:48
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(最大值與最小值)導學案(無答案)蘇教版選修1-1【學習目標】1、使學生掌握可導函數(shù))(xf在閉區(qū)間??ba,上所有點(包括端點ba,)處的函數(shù)中的最大(或最?。┲?;2、使學生掌握用導數(shù)求函數(shù)的最大值與最小值的方法【課前預習】
2024-11-24 00:30
【摘要】1.3.3函數(shù)的最大值與最小值(一)一、教學目標:理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習慣,提高應用知識解決實際問題的能力.二、教學重點:求函數(shù)的最值及求實際問題的最值.教學難點:求實際問題的最值.掌握求最值的方法關鍵是嚴格套用求最值的步驟,突破難點要把實際問題“數(shù)學化”
2024-11-23 19:27