【摘要】第一課時天涯海角目標1、熟悉橢圓的幾何性質(對稱性、范圍、頂點、離心率);2、掌握橢圓中a、b、c、e的幾何意義以及a、b、c的相互關系;3、理解橢圓的離心率對橢圓形狀的影響;4、能利用橢圓的幾何性質求橢圓的標準方程。問題如何畫橢圓的圖形(草圖)123-1
2024-11-16 16:43
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2當焦點在X軸上時當焦點在Y軸上時二、橢圓簡單的幾何性質1、范圍:
2024-11-16 18:11
【摘要】橢圓的性質問題1:①橢圓是不是軸對稱圖形?是不是中心對稱圖形?為什么?②標準位置的橢圓的對稱軸是什么?對稱中心是什么?結論:①橢圓是軸對稱圖形,也是中心對稱圖形。②標準位置的橢圓的對稱軸是x軸、y軸,原點是它的對稱中心。橢圓的對稱中心叫做橢圓的中心。問題2:?,)(12222分
2024-08-27 02:00
【摘要】欄目導引新知初探思維啟動典題例證技法歸納知能演練輕松闖關第二章圓錐曲線與方程2.橢圓的簡單幾何性質習題課第1課時橢圓的簡單幾何性質欄目導引新知初探思維啟動典題例證技法歸納知能演練輕松闖關第二章圓錐曲線與方程學習導航
2024-08-05 10:50
【摘要】橢圓的簡單幾何性質典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例
2024-08-03 06:44
【摘要】復習思考?橢圓的定義、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222????bab
2024-08-05 15:26
【摘要】導標:首先,請同學們回憶一下:1、橢圓的定義是什么?2、橢圓的標準方程是什么?3、對應的橢圓圖形是怎樣?今天,我們將從橢圓的標準方程出發(fā),借助圖形來探求橢圓的一些幾何性質。達標:一、橢圓的范圍oxy由11122222222?????b
2024-11-22 15:24
【摘要】幾何性質(二)標準方程范圍對稱性頂點坐標焦點坐標半軸長離心率a、b、c的關系22221(0)xyabab????|x|≤a,|y|≤b關于x軸、y軸成軸對稱;關于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)
2024-08-04 04:32
【摘要】橢圓的簡單幾何性質一、教學目標(一)知識教學點通過橢圓標準方程的討論,使學生掌握橢圓的幾何性質,能正確地畫出橢圓的圖形,并了解橢圓的一些實際應用.(二)能力訓練點通過對橢圓的幾何性質的教學,培養(yǎng)學生分析問題和解決實際問題的能力.(三)學科滲透點使學生掌握利用方程研究曲線性質的基本方法,加深對直角坐標系中曲線與方程的關系概念的理解,這樣才能解決隨之而來的一些問題,如
2025-06-10 23:54
【摘要】一、橢圓的范圍oxy由11122222222?????byaxbyax和即byax??和說明:橢圓位于矩形之中。二、橢圓的對稱性)0(12222????babyax在之中,把-換成-,方程不變,說明:
2024-10-06 18:19
【摘要】《橢圓的幾何性質》教學目標?知識與技能目標?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標準方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準線及焦半徑的概念,利用信息技術初步了解橢圓的第二定義.?過程與方法目標?(1)復習與引入過程
2024-11-13 13:05
2024-08-12 15:06
【摘要】第二課時橢圓方程及性質的應用第二課時課堂互動講練知能優(yōu)化訓練課前自主學案學習目標學習目標,體會一元二次方程的根與系數(shù)的關系的應用.2.掌握橢圓的離心率的求法及其范圍的確定.3.掌握點與橢圓、直線與橢圓的位置關系,并能利用橢圓的有關性質解決實際問題.課前自主學案溫故夯基
【摘要】例5過拋物線焦點F的直線交拋物線于A,B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸。xyOFABD例1已知拋物線的方程為y2=4x,直線l過定點P(-2,1),斜率為k,k為何值時,直線l與拋物線y2=4x:只有一個公共點;有兩個公共
2024-11-13 03:31
【摘要】質D復習思考?橢圓的定義、標準方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于|F1F2|)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222?
2024-08-05 14:44