【摘要】型未定式型及一、??00定義()()()()()lim()0.0xaxxaxfxFxfxFx????????如果當或時,兩個函數(shù)與都趨于零或都趨于無窮大,那末極限可能存在、也可能不存在.通常把這種
2025-04-26 03:51
【摘要】§洛必達法則達法則型不定式的解法:洛必型一、???00型不定式的解法型型型型二、00,0,1,0,????????洛必達法則型未定式解法型及一、:00??定義.00)()(lim,)()(,)()(型未定式或稱為那末極限大都趨于零或都趨于無窮與兩個函數(shù)時或如果當???????
2024-08-05 16:20
【摘要】第二節(jié)求導法則一、和、差、積、商的求導法則定理并且可導處也在點分母不為零們的和、差、積、商則它處可導在點如果函數(shù),)(,)(),(xxxvxu).0)(()()()()()(])()([)3();()()()(])()([)2();()(])()([)1(2????????????
2025-04-26 03:39
【摘要】00,1,0,,0???????第二節(jié)洛必達法則一洛必達法則二其他未定式洛必達法則型未定式解法型及一、:??00.)x(F)x(flim,)x(F)x(f,)x(ax)x(ax型未定式或稱為那末極限大都趨于零或都趨于無窮與兩個函數(shù)時或如果當????????00例如
2024-08-12 16:52
【摘要】復合函數(shù)求導法則性質(zhì)且點可導在則點可導在而點可導在設(shè),)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫成導函數(shù)的形式為簡寫為)()(00x
2025-01-23 05:44
【摘要】第四節(jié)極限運算法則定理1.0,)()(lim)3(;)]()(lim[)2(;)]()(lim[)1(,)(lim,)(lim??????????BBAxgxfBAxgxfBAxgxfBxgAxf其中則設(shè)證.)(lim,)(limBxgAxf???.0,0.)(,)
2025-04-26 04:02
【摘要】第七節(jié)函數(shù)的連續(xù)性一、函數(shù)的連續(xù)性.),,(,),()(0000的增量為自變量在點稱內(nèi)有定義在設(shè)函數(shù)xxxxxUxxUxf???????.)()()(00的增量相應于為稱xxfxfxxfy??????xy0xy00xxx??0)(xfy?x?xx??00xx?y?y?
2025-04-26 04:08
【摘要】第一講極限及其運算法則定理:.)(lim)(lim)(lim000AxfxfAxfxxxxxx?????????例1、求下列函數(shù)極限。);(lim)()1(0xfxxfx??);(lim][)()2(1xfxxfx??).(lim010001s
2024-08-16 05:42
【摘要】隱函數(shù)的求導法則一、一個方程的情形二、方程組的情形一、一個方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內(nèi)確定了一個稱方程此時值與之對應相應地總有唯一的時取某一區(qū)間的任一值在一定條件下,當,滿足方
2025-01-23 05:31
【摘要】變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為?21)(TTdttv設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv,求物體在這段時間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2024-08-02 11:18
【摘要】一、多元復合函數(shù)求導法則二、小結(jié)思考題第四節(jié)多元復合函數(shù)的求導法則一、多元復合函數(shù)的求導法則在一元函數(shù)微分學中,復合函數(shù)的求導法則起著重要的作用.現(xiàn)在我們把它推廣到多元復合函數(shù)的情形.下面按照多元復合函數(shù)不同的復合情形,分三種情況進行討論.定理1如果函數(shù))(tu?
2024-09-03 12:43
【摘要】上頁下頁鈴結(jié)束返回首頁§羅彼塔法則一、未定式二、“零比零”型未定式的定值法四、其它類型未定式的定值法三、“無窮比無窮”型未定式的定值法上頁下頁鈴結(jié)束返回首頁上頁下頁鈴結(jié)束返回首頁一、未定式在函數(shù)商的極限中,如果分子分母同是無窮小量或同是無
2025-01-15 23:32
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2024-08-02 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2024-08-02 11:10
【摘要】一、問題的提出二、積分上限函數(shù)及其導數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2024-08-24 08:39