【摘要】一、求軌跡的常用方法:1、直接法(五步法、定義法)2、間接法(代入法、參數(shù)法)二、求軌跡方程的注意事項:一、求軌跡的常用方法:五步法的關(guān)鍵:找出限制(約束)動點運動所滿足的條件。定義法:分析條件,判斷軌跡是什么曲線,從而利用曲線的定義或利用其一般形式采用待定系數(shù)法求動點的軌跡方程。
2024-11-10 15:49
【摘要】2022屆高考數(shù)學(xué)復(fù)習強化雙基系列課件77《圓錐曲線-軌跡方程》基本知識概要:一、求軌跡的一般方法:1.直接法:如果動點運動的條件就是一些幾何量的等量關(guān)系,這些條件簡單明確,易于表述成含x,y的等式,就得到軌跡方程,這種方法稱之為直接法。用直接法求動點軌跡一般有建系,設(shè)點,列式,化簡,證明五個步驟,最后的證明可以省
2024-08-04 10:09
【摘要】圓錐曲線軌跡方程的解法目錄一題多解 2一.直接法 3二.相關(guān)點法 6三.幾何法 10四.參數(shù)法 12五.交軌法 14六.定義法 16一題多解設(shè)圓C:(x-1)2+y2=1,過原點O作圓的任意弦OQ,求所對弦的中點P的軌跡方程。一.直接法設(shè)P(
2025-06-25 19:28
【摘要】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
2025-03-28 00:04
【摘要】圓錐曲線有關(guān)弦的問題如果直線l與圓錐曲線C相交于兩個不同點A、B,那么線段AB稱為圓錐曲線C的一條弦,直線l稱為圓錐曲線C的一條割線。一、圓錐曲線的焦點弦過拋物線pxy22?的焦點的一條直線和這拋物線相交,兩個交點的縱坐標為.,,22121pyyyy??則這是拋物線焦點弦的一個重要性質(zhì)。此外,與焦點弦有關(guān)的性質(zhì)
2024-09-05 11:55
【摘要】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ?。 。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2024-07-31 00:18
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2024-08-05 00:15
【摘要】一、橢圓1.點P處的切線PT平分△PF1F2在點P處的外角.2.PT平分△PF1F2在點P處的外角,則焦點在直線PT上的射影H點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.3.以焦點弦PQ為直徑的圓必與對應(yīng)準線相離.4.以焦點半徑PF1為直徑的圓必與以長軸為直徑的圓內(nèi)切.5.若在橢圓上,則過的橢圓的切線方程是.6.若在橢圓外,則過Po作橢圓的兩條切線
2025-06-27 18:05
【摘要】......直線圓錐曲線有關(guān)向量的問題高考考什么知識要點:1.直線與圓錐曲線的公共點的情況(1)沒有公共點方程組無解(2)一個公共點(3)兩個公共點2.連結(jié)圓錐曲線上兩個點的線段稱
2025-03-28 06:29
【摘要】圓錐曲線上有關(guān)點與點的對稱關(guān)系主講:白象中學(xué)楊永遠請看問題:已知橢圓方程為:過點P(2,2)是否存在直線l與橢圓交于A,B兩點,且P是中點?若存在,求出直線的方程,若不存在,請說明理由.小明的解答如下:設(shè)A(x1,y1),B(x2,y2),則有(1)式::及(2)式
2024-11-10 14:25
【摘要】鳳凰出版?zhèn)髅郊瘓F版權(quán)所有網(wǎng)站地址:南京市湖南路1號B座808室聯(lián)系電話:025-83657815Mail:第13講圓錐曲線(含軌跡問題)本節(jié)知識在江蘇高考試題中要求比較低,橢圓的標準方程和幾何性質(zhì)是B級考點,其余都是A級考點,但高
2024-08-26 20:11
【摘要】圓錐曲線小結(jié)與復(fù)習一東莞中學(xué)松山湖學(xué)校劉建軍審核安徽涇縣中學(xué)查日順軌跡方程的求解問題:(1)建系(2)設(shè)點(3)列式(4)代換(5)化簡(6)證明(略)注:驗證常用思路:化簡是否同解變形;是否滿足題意;特殊點是否成立:(1)直接法;(2)待
2024-08-05 03:46
【摘要】直線與圓錐曲線的位置關(guān)系思考一:直線與圓有幾種位置關(guān)系??答:有三種:相交、相切、相離復(fù)習回顧思考二:如何判定直線與圓的位置關(guān)系??1幾何法:?(1)dr=〉
2024-08-06 04:01
【摘要】圓錐曲線復(fù)習課橢圓雙曲線拋物線幾何條件與兩個定點的距離的和等于常數(shù)與兩個定點的距離的差的絕對值等于常數(shù)與一個定點和一條定直線的距離相等標準方程圖形頂點坐標(±a,0),(0,±b)(±a,0)(0,0))0(12
【摘要】求圓錐曲線的軌跡方程練習二1.已知動圓P過定點A(-3,0),同時在定圓B:(x-3)2+y2=64的內(nèi)部與其相內(nèi)切,求動圓圓心P的軌跡方程。2.一動圓與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程。3.一動圓與圓外切,同時與圓內(nèi)切,求動圓圓心的軌跡方程。
2025-06-29 05:13