【摘要】第14章勾股定理14.2勾股定理的應(yīng)用第1課時(shí)勾股定理在生活中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.經(jīng)過(guò)觀察、操作、討論、發(fā)現(xiàn),歸納理解立體圖形表面最短路徑問(wèn)題的求解思路.2.在理解勾股定理及其逆定理的基礎(chǔ)上,通過(guò)分析、探究,能夠?qū)⑵渌麑?shí)際問(wèn)
2025-06-21 00:11
2025-06-15 12:08
【摘要】課堂反饋1.如圖41-1,一圓柱高8cm,底面半徑為6πcm,一只螞蟻從點(diǎn)A沿外表面爬到點(diǎn)B處吃食,要爬行的最短路程是()A.6cmB.8cmC.10cmD.12cm圖41-1C2.如圖41-2,有兩棵樹(shù),一棵高
2025-06-21 00:06
【摘要】第14章勾股定理14.2勾股定理的應(yīng)用第2課時(shí)勾股定理在數(shù)學(xué)中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.在理解勾股定理及其逆定理的基礎(chǔ)上,經(jīng)過(guò)觀察、分析、探究,能畫出長(zhǎng)為無(wú)理數(shù)的線段.2.通過(guò)分析圖形、思考、討論,能夠?qū)⑴c直角三角形有關(guān)的數(shù)學(xué)問(wèn)題
2025-06-21 00:16
【摘要】第14章勾股定理勾股定理的應(yīng)用第1課時(shí)勾股定理的應(yīng)用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-22 17:54
【摘要】課堂反饋1.如圖42-1是由4個(gè)邊長(zhǎng)為1的正方形構(gòu)成的“田字格”.只用沒(méi)有刻度的直尺在這個(gè)“田字格”中最多可以作出以格點(diǎn)為端點(diǎn)、長(zhǎng)度為5的線段()A.2條B.5條C.7條D.8條圖42-1D2.如圖42-2,在四邊形ABCD
2025-06-21 00:19
【摘要】在同一平面內(nèi),兩點(diǎn)之間,線段最短創(chuàng)設(shè)情境明確目標(biāo)從行政樓A點(diǎn)走到教學(xué)樓B點(diǎn)怎樣走最近?教學(xué)樓行政樓BA你能說(shuō)出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點(diǎn)沿側(cè)面爬行到B點(diǎn),怎樣爬路程最短?創(chuàng)設(shè)情境明確目標(biāo)BA
【摘要】第14章勾股定理勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS立體圖形上的最短距離:將立體圖形側(cè)面展開(kāi),確定兩點(diǎn)在展開(kāi)圖上的位置,連成,的長(zhǎng)度就是立體圖形上的兩點(diǎn)間的最短距離.自我診斷1.如圖,長(zhǎng)方體的高為3cm,底面是正方形,邊長(zhǎng)為2cm,現(xiàn)在一蟲(chóng)子從點(diǎn)A出發(fā),沿長(zhǎng)方體表面到
2025-06-16 14:08
【摘要】第14章勾股定理勾股定理的應(yīng)用第2課時(shí)勾股定理及其逆定理的綜合應(yīng)用用勾股定理及逆定理可以解決實(shí)際生活中的很多問(wèn)題,勾股定理的條件是,逆定理的條件是.直角三角形三角形兩邊的平方和等于第三邊的平方◎知識(shí)點(diǎn)勾股
2025-06-21 00:14
2025-06-17 18:49
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-20 23:29
2025-06-20 04:01
2025-06-16 13:51
【摘要】abc學(xué)習(xí)目標(biāo)課堂小結(jié)鞏固練習(xí)例題講解學(xué)習(xí)五步曲探究新知學(xué)習(xí)目標(biāo)1、掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.2、能運(yùn)用勾股定理由已知直角三角形中的兩邊長(zhǎng),求出第三邊長(zhǎng).3、能正確靈活運(yùn)用勾股定理及由它得到的直角三角形的判別方法.2022年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)