【摘要】第四講空間向量一、定義:(1)已知,則(2)已知,則;;(3)數(shù)量積:注:;;(4)應(yīng)用:已知=二、空間向量解決空間立體幾何問題:1、位置關(guān)系判定:(1)線線平行:線線垂直:(2)線面平行:(其中為平面的法向量)線面垂直:(3)面面平行:面面垂直:2、求夾角:(1)線線角:,其中(2)線面角:,其中(3)二
2025-03-28 06:42
【摘要】1.如圖,四棱錐中,底面為矩形,底面,,點M在側(cè)棱上,=60°(I)證明:M在側(cè)棱的中點(II)求二面角的大小。2.如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA⊥平面ABCD,,E,F(xiàn)分別是BC,PC的中點.(Ⅰ)證明:AE⊥PD;(Ⅱ)若H為PD上的動點,EH與平面PAD所成最大角的正切值為,求二面角E—AF—C的余弦值.E
【摘要】平面法向量在立體幾何中的應(yīng)用——利用法向量求二面角(一)平面的法向量的定義:n如果n??,那么向量n叫做平面?的法向量?1、利用平面法向量求直線與平面所成的角:直線與平面所成的角等于平面的法向量所在的直線與已知直線的夾角的余角。(二
2024-11-28 14:09
【摘要】用向量法求二面角例1:在三棱柱ABO—A1B1O1中,平面OBB1O1⊥平面OAB,∠O1OB=600,∠BOA=900,OB=OO1=2,AO=.求3(1)二面角O—AB—O1的大小AOBA1O1B1xyz42arccos例2:已知四棱錐P—ABC
2024-11-13 08:07
【摘要】二面角求法歸納18題,通常是立體幾何(12-14分),本題考查空間線面平行、線面垂直、面面垂直的判斷與證明,考查二面角的求法以及利用向量知識解決幾何問題的能力,同時考查空間想象能力、推理論證能力和運算能力。以下是求二面角的五種方法總結(jié),及題形歸納。定義法:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面,
2025-03-27 06:31
【摘要】βabABCD設(shè)異面直線a、b的夾角為θcosθ=??AB,CDcos||=AB·CD·AB||CD||θ=??AB,CD或θ=π-?
2025-05-18 22:58
【摘要】第一篇:第四節(jié)利用空間向量求二面角及證明面面垂直 第四節(jié)利用空間向量求二面角及證明面面垂直一、二面角 二面角a-l-b,若a的一個法向量為m,b的一個法向量為n,則cos,=,二面角的大小為...
2024-11-06 12:02
【摘要】 《二面角的一種求法》說課稿 一、教材簡析: 1.地位與作用: 本節(jié)是高二數(shù)學(xué)下冊第九章《直線、平面、簡單幾何體》中相關(guān)9·6二面角的求解問題。是在立體幾何知識學(xué)習(xí)完畢,學(xué)生已具有...
2024-12-03 00:45
【摘要】......二面角大小的幾種求法二面角大小的求法中知識的綜合性較強,方法的靈活性較大,一般而言,二面角的大小往往轉(zhuǎn)化為其平面角的大小,從而又化歸為三角形的內(nèi)角大小,在其求解過程中,主要是利用平面幾何、立體幾何、三角函數(shù)等
2025-06-19 00:22
【摘要】立體幾何二面角求法一:知識準(zhǔn)備1、二面角的概念:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.2、二面角的平面角的概念:平面角是指以二面角的棱上一點為端點,在兩個半平面內(nèi)分別做垂直于棱的兩條射線,這兩條射線所成的角就叫做該二面角的平面角。3、二面角的大小范圍:[0°,180°]4、三垂線定理:平面內(nèi)
2025-03-28 03:49
【摘要】一題多解突破無棱二面角的求法河北石家莊市平山實驗中學(xué)齊艷霞2008年石家莊市高中畢業(yè)班第一次模擬考試試卷第19題已知△ABC所在平面與直角梯形ACEF所在平面垂直,AF⊥AC,EB⊥AB,AF∥CE,AB=BC=CE=2AF=2,O為AC中點。如下
2025-03-27 05:38
【摘要】空間向量的坐標(biāo)運算----求平面法向量練:在正方體ABCD-A1B1C1D1中,已知邊長為1,點E在棱BB1上,求(1)若E為棱BB1的中點,CD1與DE所成的角;(2)若BE的長度為a,CD1與DE所成的角;(3)當(dāng)為a何值時,使CD1垂直DEa=1xyzAB
2024-11-13 06:00
【摘要】 知識點:二面角的求法一、思想方法求二面角的大小,是立體幾何計算與運用中的一個重點和難點.直接法的核心是作(或找)出二面角的平面角,間接法可利用投影、異面直線、空間向量等。常用的方法有以下幾種:方法一(定義法)即從二面角棱上一點在兩個面內(nèi)分別引棱的垂線如圖1。方法二(三垂線法)在二面角的一
2025-03-28 06:41
【摘要】......空間向量專題練習(xí)一、填空題(本大題共4小題,)(1,0,-1),平面β的法向量為(0,-1,1),則平面α與平面β所成二面角的大小為______.【答案】π3或2π3【解析】解:設(shè)平面α的
2025-06-26 03:42
【摘要】長寧中學(xué)李昌源求二面角的平面角一、教學(xué)目標(biāo)1.理解和掌握二面角的有關(guān)概念;掌握二面角的平面角的常見求法.2.用轉(zhuǎn)化的思維方法將二面角問題轉(zhuǎn)化為其平面角問題,進一步培養(yǎng)學(xué)生的空間想象能力和分析、解決問題的能力.二、教學(xué)重點、難點1.教學(xué)重點:二面角的平面角的常見求法.2.教學(xué)難點:如何選取恰當(dāng)?shù)奈恢煤头椒ㄗ鞒龆娼堑?/span>
2024-11-13 06:01