freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)——平行四邊形的綜合壓軸題專題復(fù)習(xí)含答案解析(參考版)

2025-03-30 22:25本頁面
  

【正文】 ∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點:;;;;.15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過點B的直線折疊(折痕為BM),點A恰好落在CD邊的中點P處.(1)求矩形ABCD的邊AD的長.(2)若P為CD邊上的一個動點,折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當(dāng)折痕MN的端點N在AB上時,求當(dāng)△PCN為等腰三角形時x的值;②當(dāng)折痕MN的端點M在CD上時,設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過點N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當(dāng)點N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過N點作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當(dāng)點M在CD上時,N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點:函數(shù)的性質(zhì)、勾股定理.。.∵∠QOF+∠QFO=90176。.∵四邊形FKBC是矩形,∴KF=BC,F(xiàn)C=KB.∵∠FKB=90176。.∵M為AD的中點,∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176?!螮DF+∠NDF=90176。F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,其中0n?1.(1)如圖2,當(dāng)n=1(即M點與D點重合),求證:四邊形BEDF為菱形;(2)如圖3,當(dāng)(M為AD的中點),m的值發(fā)生變化時,求證:EP=AE+DP;(3)如圖1,當(dāng)m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.【答案】(1)證明見解析;(2)證明見解析;(3)值不變,理由見解析.【解析】試題分析:(1)由條件可知,當(dāng)n=1(即M點與D點重合),m=2時,AB=2AD,設(shè)AD=a,則AB=2a,由矩形的性質(zhì)可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結(jié)論.(2)延長PM交EA延長線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質(zhì)就可以得出結(jié)論.(3)如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,通過證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。∠DCQ+∠PCD=90176。BC=FC,所以△ABC≌△DFC,從而△ABC與△DFC的面積相等;(2)延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.得到四邊形ACDE,BCFG均為正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.于是AP=DQ.又因為S△ABC=BC?AP,S△DFC=FC?DQ,所以S△ABC=S△DFC;(3)根據(jù)(2)得圖中陰影部分的面積和是△ABC的面積三倍,若圖中陰影部分的面積和有最大值,則三角形ABC的面積最大,當(dāng)△ABC是直角三角形,即∠C是90度時,陰影部分的面積和最大.所以S陰影部分面積和=3S△ABC=334=18.(1)證明:在△ABC與△DFC中,∵,∴△ABC≌△DFC.∴△ABC與△DFC的面積相等;(2)解:成立.理由如下:如圖,延長BC到點P,過點A作AP⊥BP于點P;過點D作DQ⊥FC于點Q.∴∠APC=∠DQC=90176。時,(1)中結(jié)論還成立嗎?若成立,請結(jié)合圖1給出證明;若不成立,請說明理由;(3)運用:如圖3,分別以△ABC的三邊為邊向外側(cè)作的四邊形ACDE、BCFG和ABMN為正方形,則稱這三個正方形為外展三葉正方形.已知△ABC中,AC=3,BC=4.當(dāng)∠C=_____176?!郃E和EC在同一條直線上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考點:(1)、三角形全等的性質(zhì);(2)、矩形的性質(zhì).13.如圖1,若分別以△ABC的AC、BC兩邊為邊向外側(cè)作的四邊形ACDE和BCFG為正方形,則稱這兩個正方形為外展雙葉正方形.(1)發(fā)現(xiàn):如圖2,當(dāng)∠C=90176。根據(jù)RT△ADF中AM=MF得出DM=AM=MF,根據(jù)RT△AEF中AM=MF得出AM=MF=ME,從而說明DM=ME.試題解析:如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長EM交AD于點H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠
點擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1