【總結(jié)】2020年12月18日星期五學習目標?⒈掌握空間向量夾角和模的概念及表示方法;?⒉掌握兩個向量數(shù)量積的概念、性質(zhì)和計算方法及運算律;?⒊掌握兩個向量數(shù)量積的主要用途,會用它解決立體幾何中的一些簡單問題.?重點:兩個向量的數(shù)量積的計算方法及其應(yīng)用.?難點:兩個向量數(shù)量積的幾何意義.共面向量定理:如果兩個向量
2024-11-11 21:09
【總結(jié)】平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對實數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-09 09:20
【總結(jié)】1空間向量的坐標表示2提問:我們知道,在平面直角坐標系中,平面上任意一點的位置都有唯一的坐標來表示.那空間中任意一點的位置怎樣用坐標來表示?3墻墻地面下圖是一個房間的示意圖,我們來探討表示電燈位置的方法.z13
2024-11-09 09:21
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運算性質(zhì),逐題計算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【總結(jié)】復習:向量數(shù)量積的定義是什么?如何求向量夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答:babababa????????cos,cos運算律有:)()().(2bababa????????abba???.1cbcacba?????
2024-11-10 08:36
【總結(jié)】復習1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,
2024-11-11 21:10
【總結(jié)】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2024-11-09 04:47
【總結(jié)】平面向量的線性運算向量加法運算及其幾何意義問題提出、平行向量、相等向量的含義分別是什么?,向量的大小和方向是如何反映的?什么叫零向量和單位向量?,從而給數(shù)賦予了新的內(nèi)涵.如果向量僅停留在概念的層面上,那是沒有多大意義的.我們希望兩個向量也能相加,拓展向量的數(shù)學意義,提升向量的理論價值,這就需要建立相關(guān)的原理和法則
2024-11-10 01:04
【總結(jié)】1、平面向量的坐標表示與平面向量分解定理的關(guān)系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【總結(jié)】2020年12月19日星期六a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-12 01:34
【總結(jié)】第五章知識點回顧一、本章知識(1)向量的基本要素:大小和方向.(2)向量的表示:幾何表示法;字母表示:a;坐標表示法a=xi+yj=(x,y).(3)向量的長度:即向量的大小,記作|a|.(4)特殊的向量:零向量a=O|a|=O.單位向量aO為單位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(
2025-04-04 04:58
【總結(jié)】復數(shù)與平面向量的聯(lián)系請同學們考慮:1、有關(guān)復數(shù)的知識,我們學了什么?2、有關(guān)向量的知識,你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
【總結(jié)】2020年12月19日星期六用空間向量解決立體幾何問題的步驟:(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量問題)(進行向量運
【總結(jié)】1、向量定義復習2、向量加法的三角形法則3、向量加法的平行四邊形法則注:兩個向量的和仍是向量。具有大小和方向的量ABCABDC問題:一架飛機由北京飛往香港,然后再由香港返回北京,我們把北京記作A點,香港記作B點,那么這