【總結(jié)】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導(dǎo)數(shù)?1.原函數(shù)與不定積分的概念?2.積分計算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設(shè)f(z)在單連通區(qū)域B內(nèi)解析,則對B中任意曲線C,積分?cfdz與路徑
2025-05-13 18:11
【總結(jié)】類型1.形如的積分,其中R(cosx,sinx)為cosx與sinx的有理函數(shù).令z=eix,則dz=ieixdx=izdx?π20d)sin,(cosxxxR????????????????1||1||222
2024-09-01 08:12
【總結(jié)】一、函數(shù)極限的定義三、小結(jié)思考題二、函數(shù)極限的性質(zhì)第二節(jié)函數(shù)的極限一、函數(shù)極限的定義在自變量的某個變化過程中,如果對應(yīng)的函數(shù)值無限接近于某個確定的常數(shù),那么這個確定的數(shù)叫做自變量在這一變化過程中函數(shù)的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應(yīng)的函數(shù)值任意接近于有限值自
2024-08-30 12:44
【總結(jié)】第九章向量值函數(shù)的導(dǎo)數(shù)與積分●§向量值函數(shù)及其極限與連續(xù)★§向量值函數(shù)的導(dǎo)數(shù)與微分●§向量值函數(shù)的不定積分與定積分§向量值函數(shù)的導(dǎo)數(shù)與微分向量值函數(shù)的導(dǎo)數(shù)與微分內(nèi)容小結(jié)與作業(yè)空間曲線的切線及法平面方程Dept.Math.&Sys.Sc
2025-05-14 22:58
【總結(jié)】第十節(jié)函數(shù)的極值與最值一、函數(shù)的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個極大值點(或極小值點)極大值點與極小值點統(tǒng)稱為極值點.極大值與極小值統(tǒng)稱為極值.
2024-07-31 11:11
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換第二章解析函數(shù)1解析函數(shù)的概念2函數(shù)解析的充要條件3初等函數(shù)復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換
2024-08-29 01:27
【總結(jié)】第3節(jié)第二型(對坐標(biāo)的)曲面積分一.曲面?zhèn)鹊母拍?雙側(cè)曲面:.,.,,nPnP來的相應(yīng)的法向量也回到原置時續(xù)變化又回到原來的位邊界而任意連的不越過上在當(dāng)點選定一個記為量作曲面的法向任一點上過一光滑曲面是設(shè)????.,,,面雙側(cè)曲面也稱為有向曲故曲面的側(cè)取定了法向量即選取了區(qū)分曲面的兩側(cè)量的指
2024-08-03 04:16
【總結(jié)】calculus§定積分基本積分方法301sinsinxxdx???例:求32sinsinsinsinsincosxxxxxx????解:由于被積函數(shù)(1)一、直接積分法cossin,02cossin,2xxxxxx
2025-01-19 21:34
【總結(jié)】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換?初等函數(shù)復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform復(fù)變函數(shù)與積分變換yieyezfxxsincos)(??1212(),()(),
2024-08-29 01:35
【總結(jié)】信息學(xué)院羅捍東1第四節(jié)函數(shù)的極值、最值及其應(yīng)用函數(shù)的極值及其求法oxyab()yfx?1x2x4x5x6xoxyoxy0x0x信息學(xué)院羅捍東2定義:函數(shù)的極大值與極小值統(tǒng)稱為極值,使函數(shù)取得極值的點稱為極值點.0000000
2024-10-18 14:52
【總結(jié)】一、基本內(nèi)容二、小結(jié)思考題第二節(jié)定積分的性質(zhì)*證(此性質(zhì)可以推廣到有限多個函數(shù)代數(shù)和的情況)性質(zhì)1一、基本內(nèi)容*證性質(zhì)2補充:不論的相對位置如何,上式總成立.例若(定積分對于積分區(qū)間具有可加性)則性質(zhì)3證性質(zhì)4性質(zhì)5性質(zhì)5的推論:證(1)證說明:
2025-04-28 23:54
【總結(jié)】定積分的概念一、引入定積分概念的實例二、定積分的概念三、定積分的幾何意義四、定積分的性質(zhì)一、引入定積分概念的實例引例1曲邊梯形的面積曲邊梯形設(shè)函數(shù)f(x)在區(qū)間[a,b](ab)上非負(fù)且連續(xù),由曲線y=f(x),直線x=a,x=b及x軸圍成的圖形稱為曲邊梯形,其中曲線弧y=f(x)稱為曲
2024-11-03 20:04
【總結(jié)】第6章定積分§定積分概念與性質(zhì)§微積分基本公式§定積分的換元積分法和分部積分法§定積分的應(yīng)用§反常積分初步目錄上一頁目錄下一頁退出回顧曲邊梯形求面積的問題abxyo§定積分的應(yīng)用定積分的
2025-04-29 00:58
【總結(jié)】2022/4/14寧德師范高等??茖W(xué)校1微積分的創(chuàng)立林壽2022/4/14寧德師范高等??茖W(xué)校2——牛頓時代微積分的創(chuàng)立人類數(shù)學(xué)最偉大的發(fā)明近代始于對古典時代的復(fù)興,但人們很快看到,它遠(yuǎn)不是一場復(fù)興,而是一個嶄新的時代。2022/4/14寧德師范高等專科學(xué)校3?科學(xué)思想
2025-04-13 23:38
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)一元微積分學(xué)大大學(xué)學(xué)數(shù)數(shù)學(xué)學(xué)((一一))第二十六講第二十六講定積分的計算定積分的計算第五章一元函數(shù)的積分本章學(xué)習(xí)要求:§熟悉不定積分和定積分的概念、性質(zhì)、基本運算公式.§熟悉不定積分基本運算公式.熟練掌握不定積分和定積分的換元法和分部積
2025-04-28 23:25