【總結(jié)】任意角的三角函數(shù)課本例題是我們學(xué)習(xí)的模版,我們可以通過模仿它完成其他同類練習(xí),還可以通過掌握它的思想促類旁通、舉一反三。如果在平時(shí)學(xué)習(xí)中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實(shí)際上是考查同角三角函數(shù)關(guān)系中平方關(guān)系以及商數(shù)關(guān)系的直接應(yīng)用。
2024-11-19 20:39
【總結(jié)】任意角的三角函數(shù)【學(xué)習(xí)要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內(nèi)的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學(xué)法指導(dǎo)】1.在初中所學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上過渡到任意角三角函數(shù)的概
2024-11-19 23:27
【總結(jié)】同角的三角函數(shù)的基本關(guān)系一、關(guān)于教學(xué)內(nèi)容的思考教學(xué)任務(wù):幫助學(xué)生推導(dǎo)同角三角函數(shù)的兩個(gè)基本關(guān)系及推論.教學(xué)目的:引導(dǎo)學(xué)生掌握“知一求二”的思路及變形方法。教學(xué)意義:培養(yǎng)學(xué)生認(rèn)識三角關(guān)系式之間相互聯(lián)系的主動性。二、教學(xué)過程1.同角三角函數(shù)的基本關(guān)系:(理解并推導(dǎo))①平方關(guān)系:1cossin22????;②
2024-11-19 19:36
【總結(jié)】利用三角函數(shù)定義解題設(shè)角?的終邊上任意一點(diǎn)P的坐標(biāo)是),(yx,它與原點(diǎn)的距離是r(22yxr??),那么ry??sin,rx??cos,xy??tan,利用三角函數(shù)的定義,可巧妙地解決一類三角函數(shù)題。一、求值:例1:已知31tan??x,求????22coscossin2sin3
【總結(jié)】任意角的三角函數(shù)【學(xué)習(xí)要求】1.掌握正弦、余弦、正切函數(shù)的定義域.2.了解三角函數(shù)線的意義,能用三角函數(shù)線表示一個(gè)角的正弦、余弦和正切.3.能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.【學(xué)法指導(dǎo)】1.三角函數(shù)線是利用數(shù)形結(jié)合的思想解決有關(guān)問題的重要工具,利用三角函數(shù)線可以解或證明三角不等式,求函數(shù)的定義域及比較大小,三角函數(shù)線也是后面將
【總結(jié)】簡單的三角恒等變換一.復(fù)習(xí):二倍角公式:sin22sincos????22cos2cossin?????22tantan21tan?????22cos1???212sin???2()S?2()C?2()T?,,()24R
2025-06-05 22:31
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用1.方程|x|=cosx在(-∞,+∞)內(nèi)()A.沒有根B.有且僅有一個(gè)根C.有且僅有兩個(gè)根D.有無窮多個(gè)根解析:結(jié)合函數(shù)y=cosx和y=|x|的圖象可知,方程|x|=cosx有且僅有兩根.答案:C2.電流I(A)隨時(shí)間t(s)變化的關(guān)系是I=3s
2024-12-05 01:56
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用一、備用習(xí)題圖1212是周期為2π的三角函數(shù)y=f(x)的圖象,那么f(x)可寫成()(1+x)(-1-x)(x-1)(1-x)y=x+sin|x
2024-12-05 06:48
【總結(jié)】1.6三角函數(shù)模型的簡單應(yīng)用重點(diǎn):用三角函數(shù)模型來刻畫具有周期變化規(guī)律的實(shí)際問題.難點(diǎn):對問題實(shí)際意義的數(shù)學(xué)解釋,從實(shí)際問題中抽象出三角函數(shù)模型.一、三角函數(shù)在物理等其它學(xué)科中的應(yīng)用各學(xué)科的知識可以相互應(yīng)用,如物理學(xué)中的振動、波的傳播、電流、生物學(xué)中的某些生活規(guī)律等,都可以用三角函數(shù)來模擬.例1彈簧掛著的小球作上下振動,它在時(shí)間t(s
【總結(jié)】三角函數(shù)模型的簡單應(yīng)用考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難函數(shù)的圖象、解析式問題4、56、7函數(shù)模型的應(yīng)用1、38、9擬合函數(shù)問題2101.如圖,單擺從某點(diǎn)開始來回?cái)[動,離開平衡位置O的距離s(cm)和時(shí)間t(s)的函數(shù)解析式為s=6sin??????2πt+π6,那
2024-12-04 23:46
【總結(jié)】三角函數(shù)的誘導(dǎo)公式一、錯(cuò)解點(diǎn)擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時(shí)成立?若存在,求出α,β的值;若不存在,請說明理由.錯(cuò)解:將已知條件化為???????,cos2
【總結(jié)】任意角【學(xué)習(xí)要求】1.理解正角、負(fù)角、零角與象限角的概念.2.掌握終邊相同角的表示方法.【學(xué)法指導(dǎo)】1.解答與任意角有關(guān)的問題的關(guān)鍵在于抓住角的四個(gè)“要素”:頂點(diǎn)、始邊、終邊和旋轉(zhuǎn)方向.2.確定任意角的大小要抓住旋轉(zhuǎn)方向和旋轉(zhuǎn)量.3.學(xué)習(xí)象限角時(shí),注意角在直角坐標(biāo)系中的放法,在這個(gè)統(tǒng)一前提下,才能對終邊落在坐標(biāo)軸上的
2024-12-04 23:47
【總結(jié)】任意角的三角函數(shù)考查知識點(diǎn)及角度難易度及題號基礎(chǔ)中檔稍難三角函數(shù)線的概念問題1、2、3三角函數(shù)線的應(yīng)用4、5、68、9其他問題7、10111.已知MP,OM,AT分別為60°角的正弦線、余弦線和正切線,則下列結(jié)論正確的是()A.MP<OM<AT
【總結(jié)】第三章三角恒等變換一、選擇題1.函數(shù)y=sina+cosa的值域?yàn)?).A.(0,1) B.(-1,1) C.(1,] D.(-1,)2.若0<a<b<,sina+cosa=a,sinb+cosb=b,則().A.a(chǎn)<b B.a(chǎn)>b C.a(chǎn)b<1 D.a(chǎn)b>23.若=1,則的值為().
2025-06-27 22:56
【總結(jié)】2021-1-23高中數(shù)學(xué)蘇教版必修4三角函數(shù)知識點(diǎn)總結(jié)一、角的概念和弧度制:(1)在直角坐標(biāo)系內(nèi)討論角:角的頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,角的終邊在第幾象限,就說過角是第幾象限的角。若角的終邊在坐標(biāo)軸上,就說這個(gè)角不屬于任何象限,它叫象限界角。(2)①與?角終邊相同的角的集合:},2|{},360|{0ZkkZkk?????
2024-12-18 04:37