【總結(jié)】第一篇:不等式證明 不等式的證明 比較法證明不等式 a2-b2a-bb0,求證:+b2a+b 2.(本小題滿分10分)選修4—5:不等式選講 (1)已知x、y都是正實(shí)數(shù),求證:x3+y...
2025-11-05 12:00
【總結(jié)】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當(dāng)且僅當(dāng)或時,等號成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】第一篇:不等式證明 不等式證明 不等式是數(shù)學(xué)的基本內(nèi)容之一,它是研究許多數(shù)學(xué)分支的重要工具,在數(shù)學(xué)中有重要的地位,也是高中數(shù)學(xué)的重要組成部分,在高考和競賽中都有舉足輕重的地位。不等式的證明變化大,...
2025-10-25 17:55
【總結(jié)】不等式的證明松北高級中學(xué)吳宏亮【例1】已知a0,b0,求證:a3+b3≥a2b+ab2.(課本P12例3)即a3+b3≥a2b+ab2.證明一:比較法(作差)(a3+b3)-(a2b+ab2)=(a3-a2b)+(b3-ab2)=a2(a-b)+b2(b-a)
2025-11-01 05:07
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個正實(shí)數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細(xì)過程,謝謝!...
2025-10-27 22:00
【總結(jié)】第一篇:用均值不等式證明不等式 用均值不等式證明不等式 【摘要】:不等式的證明在競賽數(shù)學(xué)中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認(rèn)真分...
2025-10-19 10:42
【總結(jié)】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應(yīng)用 基本不等式在求解最值、值域等方面有著重要的應(yīng)用,利用基本不等式時,關(guān)鍵在對已知條件的靈活...
2025-10-20 03:11
【總結(jié)】第一篇:不等式的證明(推薦) 不等式的基本性質(zhì) 1、不等式:(1)a2+2f2a,(2)a2+b232(a-b-1),(3)a2+b2fab恒成立的個數(shù)是() (A)0(B)1(C)2(D)3[...
2025-10-30 22:00
【總結(jié)】☆教學(xué)目標(biāo):,理解不等式基本性質(zhì)的推導(dǎo)過程;;;?!罱虒W(xué)重點(diǎn):定理1的證明及幾何意義?!罱虒W(xué)難點(diǎn):換元思想的滲透。☆教學(xué)過程:一、引入:證明一個含有絕對值的不等式成立,除了要應(yīng)用一般不等式的基本性質(zhì)之外,經(jīng)常還要用到關(guān)于絕對值的和、差、積、商的性質(zhì):(1)
2025-03-25 07:13
【總結(jié)】典型例題含絕對值不等式的解法例1?解絕對值不等式|x+3||x-5|.解:由不等式|x+3||x-5|兩邊平方得|x+3|2|x-5|2,即(x+3)2(x-5)2,x1.∴?原不等式的解集為{x|x1}.評析?對于兩邊都含“單項(xiàng)”絕對值的不等式依據(jù)|x|2=x2,可在兩邊平方
2025-03-24 23:42
【總結(jié)】第一篇:均值不等式證明 均值不等式證明 一、已知x,y為正實(shí)數(shù),且x+y=1求證 xy+1/xy≥17/ 41=x+y≥2√(xy) 得xy≤1/4 而xy+1/xy≥ 2當(dāng)且僅當(dāng)xy=...
2025-10-27 18:15
【總結(jié)】第一篇:不等式證明[精選] §14不等式的證明 不等式在數(shù)學(xué)中占有重要地位,由于其證明的困難性和方法的多樣性,,而變形的依據(jù)是不等式的性質(zhì),不等式的性分類羅列如下:不等式的性質(zhì):a3b?a-b0...
【總結(jié)】不等式的證明——分析法證明不等式重要不等式:比較法之一(作差法)步驟:作差——變形——判斷與0的關(guān)系——結(jié)論學(xué)過的證明方法:比較法之二(作商法)步驟:作商——變形——判斷與1的關(guān)系——結(jié)論綜合法:利用某些已經(jīng)證明過的不等式(例如算術(shù)平均
2025-10-29 02:26
【總結(jié)】第一篇:導(dǎo)數(shù)證明不等式 導(dǎo)數(shù)證明不等式 一、當(dāng)x1時,證明不等式xln(x+1) f(x)=x-ln(x+1) f'(x)=1-1/(x+1)=x/(x+1) x1,所以f'(x)0...
2025-10-17 09:50
【總結(jié)】不等式的證明(二)一、不等式的證明1、比較法(1)比較法證明不等式的步驟(2)比較法經(jīng)常證明什么樣的不等式(3)作差之后變形的思維2、綜合法(1)定義(2)綜合法經(jīng)常證明什么樣的不等式(3)綜合法經(jīng)常證明不等式時經(jīng)常用到:(1)a2≥
2025-10-28 15:49