【導(dǎo)讀】本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷兩部分,滿分150分,考試時(shí)間120分鐘.10.已知f在R上是奇函數(shù),且滿足f(x+4)=f,當(dāng)x∈(0,2)時(shí),11.設(shè)函數(shù)f′是奇函數(shù)f(x∈R)的導(dǎo)函數(shù),f(﹣1)=0,當(dāng)x>0時(shí),(Ⅰ)若曲線y=f在x=1處的切線方程為4x﹣y+b=0,求實(shí)數(shù)a和b的值;(Ⅱ)討論函數(shù)f的單調(diào)性;若對任意x1,x2∈,x1<x2,且f+2x1<f+2x2恒成立,∴命題p為真時(shí),a≤1;由復(fù)合命題真值表得:若p或q為真,p且q為假,則命題p、q一真一假,∴對稱軸a﹣1≤2或a﹣1≥3,(Ⅱ)由(Ⅰ)知:f=+﹣lnx﹣,∵當(dāng)x∈(0,5)時(shí),f′<0,當(dāng)x∈時(shí),f′>0,