【總結(jié)】高中數(shù)學(xué)選修2-1直線的方向向量在空間中,我們?nèi)∫欢c(diǎn)A作為基點(diǎn),那么空間中任意一點(diǎn)P的位置就可以用向量AP來(lái)表示,我們把向量AP稱為點(diǎn)P的位置向量.AP:基礎(chǔ)知識(shí)基礎(chǔ)知識(shí)PAa定點(diǎn)A,向量,a,tRP??,//a則:APt
2025-05-01 22:19
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???ababab112233(,,)???ababab123(,,),()??
2025-10-31 01:17
【總結(jié)】一、向量的直角坐標(biāo)運(yùn)算二、距離與夾角(1)向量的長(zhǎng)度(模)公式注意:此公式的幾何意義是表示長(zhǎng)方體的對(duì)角線的長(zhǎng)度。在空間直角坐標(biāo)系中,已知、,則(2)空間兩點(diǎn)間的距離公式注意:(1)當(dāng)時(shí),同向;(2)當(dāng)
2025-11-03 16:42
【總結(jié)】研究從今天開始,我們將進(jìn)一步來(lái)體會(huì)向量這一工具在立體幾何中的應(yīng)用.為了用向量來(lái)研究空間的線面位置關(guān)系,首先我們要用向量來(lái)表示直線和平面的“方向”。那么如何用向量來(lái)刻畫直線和平面的“方向”呢?一、直線的方向向量AB直線l上的向量以及與共線的向量叫做直線l的方向向量。由于垂直于同一平面的直線是互相平行的,所
2025-04-30 18:16
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實(shí)際問(wèn)題的重要思想方法;?(3)能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表達(dá).?教學(xué)重點(diǎn):平面向量基本定理.
2025-11-03 18:20
【總結(jié)】2020年12月16日星期三學(xué)習(xí)目標(biāo)?1.理解空間向量的概念,掌握空間向量的加法運(yùn)算。?2.用空間向量的運(yùn)算意義和運(yùn)算律解決立幾問(wèn)題。?重點(diǎn):空間向量的加法、減法運(yùn)算律。?難點(diǎn):用向量解決立幾問(wèn)題.OABC正東正北向上如圖:已知OA=6米,AB=6米,BC=3米,
2025-10-31 08:04
【總結(jié)】第四節(jié)直線和平面垂直1.直線與平面垂直(1)直線與平面垂直的定義如果一條直線與一個(gè)平面內(nèi)的___________直線都垂直,就說(shuō)這條直線垂直于這個(gè)平面.(2)直線與平面垂直的判定定理如果一條直線和一個(gè)平面內(nèi)的____________垂直,那么這條直線垂直于這個(gè)平面.(3)直線與平面垂直的性質(zhì)定理如果兩條直線垂直于同一個(gè)平面
2025-11-03 18:10
【總結(jié)】平面向量基本定理一、問(wèn)題情境(1)如何求此時(shí)豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個(gè)向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點(diǎn)OAB?鏈接幾何畫板平面向量基本定理
2025-11-03 17:12
【總結(jié)】當(dāng)時(shí),0??與同向,ba且是的倍;||b||a?當(dāng)時(shí),0??與反向,ba且是的倍;||b||a||?當(dāng)時(shí),0??0b?,且。||0
2025-10-31 03:31
【總結(jié)】平面向量的坐標(biāo)運(yùn)算鄭德松平面向量的坐標(biāo)運(yùn)算霞浦第一中學(xué)1234-1-5-2-3-4xy501234-1-2-3-4o問(wèn)題:若已知=(1,3),=(5,1),
2025-11-03 16:44
【總結(jié)】?A?lOP特別地,若,則與所成的角是直角,若或,則與所成的角是零角。??lll??//l??l?一條直線與一個(gè)平面相交但不垂直,這條直線叫做這個(gè)平面的斜線,斜線
2025-08-05 10:08
【總結(jié)】空間向量運(yùn)算的坐標(biāo)表示(二)O?xyz??,,ijk為單位正交基底以建立空間直角坐標(biāo)系O—xyz(,,)xyzpxiyjzk?????,,ijk為基
2025-10-31 03:12
【總結(jié)】利用向量解決空間角問(wèn)題空間向量的引入為代數(shù)方法處理立體幾何問(wèn)題提供了一種重要的工具和方法,解題時(shí),可用定量的計(jì)算代替定性的分析,從而避免了一些繁瑣的推理論證。求空間角與距離是立體幾何的一類重要的問(wèn)題,也是高考的熱點(diǎn)之一。本節(jié)課主要是討論怎么樣用向量的辦法解決空間角問(wèn)題。異面直線所成角的范圍:0,2???
2025-08-16 01:49
【總結(jié)】一、復(fù)習(xí)目標(biāo):1、理解直線的方向向量與平面的法向量并會(huì)求直線的方向向量與平面的法向量。2、理解和掌握向量共線與共面的判斷方法。3、用向量法會(huì)熟練判斷和證明線面平行與垂直。立體幾何中的向量方法(一)第十三章《空間向量與立體幾何》二、重難點(diǎn):概念與方法的運(yùn)用三、教學(xué)方法:探析歸納,講練結(jié)合。四、教學(xué)過(guò)程(一)、
【總結(jié)】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運(yùn)算bkakbak+??)(數(shù)乘分配律數(shù)乘
2025-10-31 01:05