【總結(jié)】生活是數(shù)學的源泉,我們是學習數(shù)學的主人課堂寄語二次函數(shù)是一類最優(yōu)化問題的數(shù)學模型,能指導我們解決生活中的實際問題,同學們,認真學習數(shù)學吧,因為數(shù)學來源于生活,更能優(yōu)化我們的生活。課題
2025-11-12 00:41
【總結(jié)】實際問題與二次函數(shù)教案實驗中學李三紅教學目標:1.通過對實際問題情景的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。2.能用配方法或公式法求二次函數(shù)的最值,并由自變量的取值范圍確定實際問題的最值。復習回顧:1、二次函數(shù)的圖象是一條,
2025-11-14 12:40
【總結(jié)】華東師大版實驗教材九年級下冊第二十六章第三節(jié)廣州市第97中學吳晶晶前言《全日制義務教育數(shù)學課程標準(實驗稿)》要求:“數(shù)學教育不僅要使學生獲得數(shù)學知識,用數(shù)學知識去解決實際問題,而且更重要的是:使學生認識到,數(shù)學原來就來自我們身邊,是認識和解決我們
2025-11-13 02:30
【總結(jié)】課題:一次函數(shù)與二次函數(shù)的交點及交點的判斷目的:掌握一次函數(shù)與二次函數(shù)的交點坐標的算法會用判別式判斷一次函數(shù)與二次函數(shù)有無交點初步認識函數(shù)圖像中的集合問題重點:一次函數(shù)與二次函數(shù)的交點坐標的計算難點:理解函數(shù)交點坐標的意義課時:一課時過程:引入(1)看函數(shù)圖像通過函數(shù)特點,性質(zhì)求解析式(2)通過解析式畫函數(shù)圖像通過觀察發(fā)現(xiàn)在同一坐標系
2025-04-04 04:23
【總結(jié)】二次函數(shù)的圖像與性質(zhì)東廈中學紀傳裕☆y=ax2+bx+c(a≠0)的性質(zhì):☆、增減性及對稱性:☆3.二次函數(shù)解析式的求法:一.拋物線y=ax2+bx+c(a≠0)的性質(zhì):a、b、c的代數(shù)式作用說明a1.a的正負決定拋物線開口方向;2.決定拋物線開口
2025-11-12 23:05
【總結(jié)】......二次函數(shù)恒成立問題2016年8月東莞莞美學校一、恒成立問題的基本類型:類型1:設,(1)上恒成立;(2)上恒成立。類型2:設(1)當時,上恒成立,上恒成立(2)當時,上恒成立上
2025-03-24 06:26
【總結(jié)】 個性化學案二次函數(shù)綜合應用題(拱橋問題)適用學科數(shù)學適用年級初中三年級適用區(qū)域全國課時時長(分鐘)60知識點二次函數(shù)解析式的確定、二次函數(shù)的性質(zhì)和應用教學目標。2學會用二次函數(shù)知識解決實際問題,掌握數(shù)學建模的思想,進一步熟悉,點坐標和線段之間的轉(zhuǎn)化。,體會到數(shù)學來源于生活,又服務于生活,感受數(shù)學的應用價值。教學重點,并能理解
【總結(jié)】二次函數(shù)專題:角度一、有關(guān)角相等1、已知拋物線的圖象與軸交于、兩點(點在點的左邊),與軸交于點,,過點作軸的平行線與拋物線交于點,拋物線的頂點為,直線經(jīng)過、兩點.(1)求此拋物線的解析式;(2)連接、、,試比較和的大小,并說明你的理由.對于第(2)問,比較角的大小a、如果是特殊角,也就是我們能分別計算出這兩個角的大小,那么他們之間的大小關(guān)系就清楚了b
2025-03-24 06:24
【總結(jié)】二次函數(shù)綜合問題1:已知函數(shù)在區(qū)間內(nèi)單調(diào)遞減,則a的取值范圍是變式1:已知函數(shù)在區(qū)間(,1)上為增函數(shù),那么的取值范圍是_________.變式2:已知函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍.2:已知函數(shù)在區(qū)間[0,m]上有最大值3,最小值2,則m的取值范圍是變式1:若函數(shù)的最大值為M,最小值為m,則M+m的值等于__
2025-04-04 04:25
【總結(jié)】二次函數(shù)最大利潤問題,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.(1)求出每天的銷售利潤y(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?(3)如果該企業(yè)要使每天的銷售利潤不低于4000
【總結(jié)】拋物線y=x2y=-x2頂點坐標對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方(除頂點外)在x軸的下方(除頂點外)向上向下當x=0時,最小值為0當x=0時,最大值為0二次函數(shù)y=x2與y=-x2的性質(zhì)1、頂
2025-08-01 17:34
【總結(jié)】、剎車距離與二次函數(shù)&一、溫故而知新x262-2-4y=x2y=-x2比較函數(shù)y=x2和y=-x2的圖象這兩個函數(shù)的圖象形狀完全相同,關(guān)于x軸對稱,也關(guān)于原點對稱;只是開口方向不同.增減性不同.二、剎車距離1、你知道兩輛汽車在行駛時為什么要保持一
2025-07-18 13:48
【總結(jié)】二次函數(shù)y=ax2的性質(zhì)1.頂點坐標與對稱軸2.位置與開口方向3.增減性與最值開口大小拋物線頂點坐標對稱軸位置開口方向增減性最值y=ax2(a0)y=ax2(a0)(0,0)y軸y軸在x軸的上方(除頂點外)在x軸的
2025-01-19 08:35
【總結(jié)】22.2二次函數(shù)與一元二次方程1.二次函數(shù)與一元二次方程的關(guān)系(1)探究:觀察圖22-2-1:圖22-2-1①二次函數(shù)y=x2+x-1的圖象與x軸有______個交點,則一元二次方程x2+x-1=0的根的判別式Δ______0.2②二次函數(shù)y=x2-4x+4的
2025-11-13 04:09
【總結(jié)】二次函數(shù)與一元二次方程和二次函數(shù)的應用主講於憲單位丹徒區(qū)冷遹中學審稿丹徒區(qū)教研室張文全?學習目標?知識回顧?典型例題和及時反饋學習目標?了解二次函數(shù)的圖像與x軸的交點個數(shù)和
2025-08-23 13:16