【正文】
nt of collapse. Proponents of this latter approach argue that it results in a more realistic design with a more accurately provided margin of strength over the anticipated service conditions. These improvements result from the fact that nonelastic and nonlinear effects that bee significant in the vicinity of ultimate behavior of the structure can be accounted for. In recent decades, there has been a growing concern among many prominent engineers that not only is the term “factor of safety” improper and unrealistic, but worse still a structural design philosophy based on this concept leads in most cases to an unduly conservative and therefore uneconomical design, and in some cases to an unconservative design with too high a probability of failure. They argue that there is no such thing as certainty, either of failure or of safety of a structure but only a probability of failure or a probability of safety. They feel, therefore, that the variations of the load effects and the variations of the structural resistance should be studied in a statistical manner and the probability of survival or the probability of serviceability of a structure estimated. It may not yet be practical to apply this approach to the design of each individual structure. However, it is believed to be practical to do so in framing design rules and regulations. It is highly desirable that building codes and specifications plainly state the factors and corresponding probabilities that they imply. If a good alignment requires a curved bridgeover a part or the total length then all external longitudinal lines or edges of the structure should be parallel to the curved axis, thereby following again the guideline of good order. The transverse axis of piers or groups of columns should be rectangular (radial) to the curved axis, unless skew crossings over roads or rivers enforce other directions. The requirements of traffic design result occasionally in very acute angles or in level branching which cause difficulties for the bridge engineer to find pleasing solutions for the bridges.結(jié)構(gòu)設(shè)計原理 一個結(jié)構(gòu)設(shè)計工程可以被分為三個階段:計劃、設(shè)計、施工。 結(jié)構(gòu)設(shè)計包含確定結(jié)構(gòu)最合適的比例并且測量單元體的尺寸及其包含的細(xì)部。這是一項結(jié)構(gòu)工程中技術(shù)性和數(shù)學(xué)性最強(qiáng)的一個階段,但是如果不能全面的與計劃和施工階段相協(xié)調(diào)的話,它是不能被進(jìn)行的。成功的設(shè)計者在任何時候都能全面地考慮到結(jié)構(gòu)初步設(shè)計中包含的各種因素,同時還充分考慮到以后施工中可能遇到的各種問題。尤其,任何一個結(jié)構(gòu)的結(jié)構(gòu)設(shè)計首先包括結(jié)構(gòu)所必須抵抗的荷載及其它設(shè)計因素的確定,因此,在設(shè)計中必須考慮到。然后開始分析(或計算)由荷載、收縮、徐變或其它設(shè)計因素引起的總內(nèi)力(推力、剪力、彎矩和扭矩),應(yīng)力強(qiáng)度、應(yīng)變、變形及反力等。最后是比例的確定和選擇構(gòu)件和連結(jié)件的材料,用來充分的抵抗由設(shè)計條件帶來的影響效應(yīng),這種用來評斷特定的比例是否會帶來想要的結(jié)構(gòu)的標(biāo)準(zhǔn)反映出你的知識的積累程度、直覺以及判斷。常見的土木工程結(jié)構(gòu)例如橋梁、建筑,過去的這種做法是在比較應(yīng)力強(qiáng)度以及由使用荷載和其它設(shè)計因素引起的應(yīng)力強(qiáng)度的基礎(chǔ)上設(shè)計的。這種傳統(tǒng)的設(shè)計被稱作彈性設(shè)計,因為允許應(yīng)力強(qiáng)度是按照這樣一種理念進(jìn)行選擇的,即材料的拉、壓允許應(yīng)力與屈服強(qiáng)度相同并且不能超過結(jié)構(gòu)的最大應(yīng)力。當(dāng)然,考慮到垮塌的可能性及結(jié)構(gòu)的允許變形,對允許應(yīng)力強(qiáng)度的選擇可作適當(dāng)?shù)男拚?。根?jù)結(jié)構(gòu)的類型和所包含的條件,對于在假定的條件下在實際結(jié)構(gòu)的分析模型中所計算得的應(yīng)力強(qiáng)度與在實際的承載條件下實際構(gòu)件所產(chǎn)生的應(yīng)力強(qiáng)度可能相似也可能不同。當(dāng)計算得的應(yīng)力強(qiáng)度可以被先前的經(jīng)驗所解釋和肯定時,這種相似度就不再重要了。使用條件和允許應(yīng)力強(qiáng)度的選擇應(yīng)該相對垮塌留有一定的安全余地,這種安全余地大小的選擇取決于荷載、分析、設(shè)計、材料和施工的不確定程度及垮塌將引起的后果。例如:一個允許抗拉強(qiáng)度為20000磅每立方英寸的結(jié)構(gòu)采用抗拉強(qiáng)度為33000磅每立方英寸的鋼材,則相對于抗拉屈服強(qiáng)度的安全余地為33000/20000。允許應(yīng)力法有一個嚴(yán)重的缺陷,也就是它不能為各類結(jié)構(gòu)及其構(gòu)件給出一個統(tǒng)一的超載能力。因此在今天有這樣一種快速發(fā)展的趨勢,即把設(shè)計建立在極限強(qiáng)度和結(jié)構(gòu)實驗基礎(chǔ)之上,將舊的允許應(yīng)力法作為設(shè)計的一種供選擇的方法。這種新的方法在鋼筋混凝土設(shè)計文獻(xiàn)和剛結(jié)構(gòu)彈性設(shè)計文獻(xiàn)中被稱為強(qiáng)度設(shè)計。當(dāng)在強(qiáng)度設(shè)計的基礎(chǔ)確定比例時,參與的實際荷載會首先乘以一個合適的荷載分項系數(shù)(大于1),這個荷載的大小取決于荷載的不確定度,它在結(jié)構(gòu)的生命周期內(nèi)改變的可能性和荷載的聯(lián)合作用的可能性,頻率以及特殊的聯(lián)合作用的持續(xù)性。當(dāng)這種方法應(yīng)用于鋼筋混凝土設(shè)計時,鑒于材料在強(qiáng)度、工藝和尺寸上的不利的變化,結(jié)構(gòu)單元的理論承載力會由于乘了一個承載力折減系數(shù)而降低。此時結(jié)構(gòu)的比例會由以下主導(dǎo)因素確定,逐步增大的荷載將會導(dǎo)致(1)疲勞、彎曲或脆斷(2)或在某一內(nèi)部截面產(chǎn)生屈服(3)或使結(jié)構(gòu)產(chǎn)生彈性位移(4)或者使整個結(jié)構(gòu)處于垮塌的邊緣。后種方法的支持者聲稱它可以產(chǎn)生一個更實際的設(shè)計以及提供一個比實際參與的條件更精確的強(qiáng)度留余。這種改進(jìn)源于這樣一種事實,即在結(jié)構(gòu)的極限附近的非線形和線形可以得到解釋和說明。近十幾年來,許多杰出的工程師越來越觀注到安全系數(shù)這種方法的不合適和不切實際而且基于這一概念的結(jié)構(gòu)的理性設(shè)計也變的更加糟糕,導(dǎo)致了許多設(shè)計方案的過度的保守,以至于由此產(chǎn)生的不經(jīng)濟(jì)的設(shè)計和一些情況下的破壞概率較高的冒險設(shè)計。他們宣稱不論是結(jié)構(gòu)的安全或破壞,都不存在確定的事實,而反之是安全的概率或破壞的概率。因此,他們覺得荷載效應(yīng)的變化和結(jié)構(gòu)抵抗力的變化應(yīng)該應(yīng)用統(tǒng)計的方法進(jìn)行研究,并且對結(jié)構(gòu)的耐用性和使用性進(jìn)行估計。這種方法也許不適用于單個結(jié)構(gòu)的單元的設(shè)計,然而它在框架設(shè)計的規(guī)則和規(guī)定中它是適用的。建設(shè)法規(guī)和特殊規(guī)定高度的認(rèn)同并清楚的說明了設(shè)計師們所反映的因素和相應(yīng)的可能性。如果一個好的線型需要一個曲線橋——一部分或是全部的長度,則所有的外部縱向線或結(jié)構(gòu)的邊緣應(yīng)當(dāng)與曲線軸平行,這也是遵循了排列整齊的指導(dǎo)思想。除非斜向跨過路面或河流強(qiáng)制了其它的方向,否則橋墩或柱式墩的橫向軸線都必須與曲線的軸線垂直。交通設(shè)計的需求偶爾導(dǎo)致銳角斜交或者分層交叉,這些都會為橋梁設(shè)計者找到更好的解決方案帶來麻煩。47蘭州交通大學(xué)畢業(yè)設(shè)計(論文)摘要本設(shè)計是根據(jù)設(shè)計任務(wù)書的要求和《公路橋規(guī)》的規(guī)定,對劉川——白銀段的劉川大橋進(jìn)行方案比選和設(shè)計的。對該橋的設(shè)計,本著“安全、經(jīng)濟(jì)、美觀、實用”的八字原則,經(jīng)由以上的八字原則以及設(shè)計施工等多方面考慮、比較確定預(yù)應(yīng)力混凝土簡支梁橋(錐形錨具)為推薦方案。在設(shè)計中,橋梁上部結(jié)構(gòu)的計算著重分析了橋梁在使用工程中恒載以及活載的作用利,采用整體的體積以及自重系數(shù),荷載集度進(jìn)行恒載內(nèi)力的計算。運用杠桿原理法、偏心壓力法求出活載橫向分布系數(shù),并運用最大荷載法法進(jìn)行活載的加載。進(jìn)行了梁的配筋計算,估算了鋼絞線的各種預(yù)應(yīng)力損失,并進(jìn)行預(yù)應(yīng)力階段和使用階段主梁截面的強(qiáng)度和變形驗算、錨固區(qū)局部強(qiáng)度驗算和撓度的計算。本設(shè)計全部設(shè)計圖紙采用計算機(jī)輔助設(shè)計繪制,計算機(jī)編檔、排版,打印出圖及論文。還有,翻譯了一篇英文短文“Reliability analysis”。關(guān)鍵詞:預(yù)應(yīng)力混凝土、簡支梁橋、錐形錨具、AutoCAD。Abstract This is a partial structure design of a flyover crossing that is over the railway in Liuchuan—Baiyin, according to designing assignment and the standard of road and bridge. For the purpose of make the type of the bridge corresponding with the ambience and cost saving, After the parisons of economy, appearance, characteristic under the strength and effect, the first one is selected. In this design, The checking calculation of strength of main girder was preceded not only in prestressed statement but also in using statement, deflection, precamber and the assessment of reinforcing steel bar were checked too. All of the design drawings were protracted by AutoCAD. Except that the thesis called A note on dynamic fracture of the bridge bearing due to the great Hanshin–Awaji earthquake was translated into Chinese, and made a report on. Keywords: prestressed concrete、AutoCAD、simple supported beam bridge、cone anchorage device。2