freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

強大_導(dǎo)數(shù)知識點各種題型歸納方法總結(jié)-資料下載頁

2025-05-31 18:01本頁面
  

【正文】 單調(diào)遞增↗4 ∴y=f(x)在[3,1]上的最大值為13,最小值為 ,證明不等式.證明:,則,當(dāng)時。在內(nèi)是增函數(shù),即,又,當(dāng)時,在內(nèi)是減函數(shù),即,因此,當(dāng)時,不等式成立.點評:由題意構(gòu)造出兩個函數(shù),.利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間或求最值,從而導(dǎo)出是解決本題的關(guān)鍵.七定積分求值1.定積分的概念 設(shè)函數(shù)在區(qū)間上連續(xù),則:①分割:等分區(qū)間;②近似代替:取點;③求和:;④取極限::;在軸上方的面積取正,下方的面積取負(fù) 變速運動路程; 變力做功 4.定積分的性質(zhì)性質(zhì)1 (其中k是不為0的常數(shù)) 性質(zhì)2 性質(zhì)3 (定積分對積分區(qū)間的可加性) 函數(shù)是上的一個原函數(shù),即則導(dǎo)數(shù)各種題型方法總結(jié)(一)關(guān)于二次函數(shù)的不等式恒成立的主要解法:分離變量;2變更主元;3根分布;4判別式法二次函數(shù)區(qū)間最值求法:(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系 (2)端點處和頂點是最值所在(二)分析每種題型的本質(zhì),你會發(fā)現(xiàn)大部分都在解決“不等式恒成立問題”以及“充分應(yīng)用數(shù)形結(jié)合思想”,創(chuàng)建不等關(guān)系求出取值范圍。(三)同學(xué)們在看例題時,請注意尋找關(guān)鍵的等價變形和回歸的基礎(chǔ)一、基礎(chǔ)題型:函數(shù)的單調(diào)區(qū)間、極值、最值;不等式恒成立;此類問題提倡按以下三個步驟進(jìn)行解決:第一步:令得到兩個根;第二步:畫兩圖或列表;第三步:由圖表可知;其中不等式恒成立問題的實質(zhì)是函數(shù)的最值問題,常見處理方法有三種:第一種:分離變量求最值用分離變量時要特別注意是否需分類討論(0,=0,0)第二種:變更主元(即關(guān)于某字母的一次函數(shù))(已知誰的范圍就把誰作為主元);例1:設(shè)函數(shù)在區(qū)間D上的導(dǎo)數(shù)為,在區(qū)間D上的導(dǎo)數(shù)為,若在區(qū)間D上,恒成立,則稱函數(shù)在區(qū)間D上為“凸函數(shù)”,已知實數(shù)m是常數(shù),(1)若在區(qū)間上為“凸函數(shù)”,求m的取值范圍;(2)若對滿足的任何一個實數(shù),函數(shù)在區(qū)間上都為“凸函數(shù)”,求的最大值.解:由函數(shù) 得 (1) 在區(qū)間上為“凸函數(shù)”,則 在區(qū)間[0,3]上恒成立 解法一:從二次函數(shù)的區(qū)間最值入手:等價于 解法二:分離變量法:∵ 當(dāng)時, 恒成立, 當(dāng)時, 恒成立等價于的最大值()恒成立,而()是增函數(shù),則(2)∵當(dāng)時在區(qū)間上都為“凸函數(shù)” 則等價于當(dāng)時 恒成立 變更主元法 再等價于在恒成立(視為關(guān)于m的一次函數(shù)最值問題)22 例2:設(shè)函數(shù) (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值; (Ⅱ)若對任意的不等式恒成立,求a的取值范圍. (二次函數(shù)區(qū)間最值的例子)解:(Ⅰ) 3aaa3a令得的單調(diào)遞增區(qū)間為(a,3a)令得的單調(diào)遞減區(qū)間為(-,a)和(3a,+) ∴當(dāng)x=a時,極小值= 當(dāng)x=3a時,極大值=b. (Ⅱ)由||≤a,得:對任意的恒成立①則等價于這個二次函數(shù) 的對稱軸 (放縮法)即定義域在對稱軸的右邊,這個二次函數(shù)的最值問題:單調(diào)增函數(shù)的最值問題。上是增函數(shù). (9分)∴于是,對任意,不等式①恒成立,等價于 又∴點評:重視二次函數(shù)區(qū)間最值求法:對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系第三種:構(gòu)造函數(shù)求最值題型特征:恒成立恒成立;從而轉(zhuǎn)化為第一、二種題型例3;已知函數(shù)圖象上一點處的切線斜率為,(Ⅰ)求的值;(Ⅱ)當(dāng)時,求的值域;(Ⅲ)當(dāng)時,不等式恒成立,求實數(shù)t的取值范圍。解:(Ⅰ)∴, 解得 (Ⅱ)由(Ⅰ)知,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞減又 ∴的值域是(Ⅲ)令思路1:要使恒成立,只需,即分離變量思路2:二次函數(shù)區(qū)間最值二、已知函數(shù)在某個區(qū)間上的單調(diào)性求參數(shù)的范圍解法1:轉(zhuǎn)化為在給定區(qū)間上恒成立, 回歸基礎(chǔ)題型解法2:利用子區(qū)間(即子集思想);首先求出函數(shù)的單調(diào)增或減區(qū)間,然后讓所給區(qū)間是求的增或減區(qū)間的子集; 做題時一定要看清楚“在(m,n)上是減函數(shù)”與“函數(shù)的單調(diào)減區(qū)間是(a,b)”,要弄清楚兩句話的區(qū)別:前者是后者的子集例4:已知,函數(shù).(Ⅰ)如果函數(shù)是偶函數(shù),求的極大值和極小值;(Ⅱ)如果函數(shù)是上的單調(diào)函數(shù),求的取值范圍.解:. (Ⅰ)∵ 是偶函數(shù),∴ . 此時, 令,解得:. 列表如下:(-∞,-2)-2(-2,2)2(2,+∞)+0-0+遞增極大值遞減極小值遞增 可知:的極大值為, 的極小值為. (Ⅱ)∵函數(shù)是上的單調(diào)函數(shù),∴,在給定區(qū)間R上恒成立判別式法則 解得:. 綜上,的取值范圍是. 例已知函數(shù) (I)求的單調(diào)區(qū)間; (II)若在[0,1]上單調(diào)遞增,求a的取值范圍。子集思想(I) 當(dāng)且僅當(dāng)時取“=”號,單調(diào)遞增。 a11單調(diào)增區(qū)間: 單調(diào)增區(qū)間:(II)當(dāng) 則是上述增區(qū)間的子集:時,單調(diào)遞增 符合題意 綜上,a的取值范圍是[0,1]。 三、根的個數(shù)問題提型一 函數(shù)f(x)與g(x)(或與x軸)的交點======即方程根的個數(shù)問題解題步驟第一步:畫出兩個圖像即“穿線圖”(即解導(dǎo)數(shù)不等式)和“趨勢圖”即三次函數(shù)的大致趨勢“是先增后減再增”還是“先減后增再減”;第二步:由趨勢圖結(jié)合交點個數(shù)或根的個數(shù)寫不等式(組);主要看極大值和極小值與0的關(guān)系;第三步:解不等式(組)即可;例已知函數(shù),且在區(qū)間上為增函數(shù).(1) 求實數(shù)的取值范圍;(2) 若函數(shù)與的圖象有三個不同的交點,求實數(shù)的取值范圍.解:(1)由題意 ∵在區(qū)間上為增函數(shù),∴在區(qū)間上恒成立(分離變量法)即恒成立,又,∴,故∴的取值范圍為 (2)設(shè),令得或由(1)知,①當(dāng)時,在R上遞增,顯然不合題意…②當(dāng)時,隨的變化情況如下表:—↗極大值↘極小值↗由于,欲使與的圖象有三個不同的交點,即方程有三個不同的實根,故需,即 ∴,解得綜上,所求的取值范圍為根的個數(shù)知道,部分根可求或已知。例已知函數(shù)(1)若是的極值點且的圖像過原點,求的極值;(2)若,在(1)的條件下,是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像恒有含的三個不同交點?若存在,求出實數(shù)的取值范圍;否則說明理由。高1考1資1源2網(wǎng)解:(1)∵的圖像過原點,則 ,又∵是的極值點,則1 (2)設(shè)函數(shù)的圖像與函數(shù)的圖像恒存在含的三個不同交點,等價于有含的三個根,即:整理得:即:恒有含的三個不等實根(計算難點來了:)有含的根,則必可分解為,故用添項配湊法因式分解, 十字相乘法分解:恒有含的三個不等實根等價于有兩個不等于1的不等實根。題型二:切線的條數(shù)問題====以切點為未知數(shù)的方程的根的個數(shù)例已知函數(shù)在點處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:(1)的解析式;(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.(1)由題意得:∴在上;在上;在上因此在處取得極小值∴①,②,③由①②③聯(lián)立得:,∴ (2)設(shè)切點Q,過令,求得:,方程有三個根。需:故:;因此所求實數(shù)的范圍為:題型三:已知在給定區(qū)間上的極值點個數(shù)則有導(dǎo)函數(shù)=0的根的個數(shù)解法:根分布或判別式法例解:函數(shù)的定義域為(Ⅰ)當(dāng)m=4時,f (x)= x3-x2+10x,=x2-7x+10,令 , 解得或.令 , 解得可知函數(shù)f(x)的單調(diào)遞增區(qū)間為和(5,+∞),單調(diào)遞減區(qū)間為.(Ⅱ)=x2-(m+3)x+m+6, 1要使函數(shù)y=f (x)在(1,+∞)有兩個極值點,=x2-(m+3)x+m+6=0的根在(1,+∞)根分布問題:則, 解得m>3例已知函數(shù),(1)求的單調(diào)區(qū)間;(2)令=x4+f(x)(x∈R)有且僅有3個極值點,求a的取值范圍.解:(1) 當(dāng)時,令解得,令解得,所以的遞增區(qū)間為,遞減區(qū)間為.當(dāng)時,同理可得的遞增區(qū)間為,遞減區(qū)間為.(2)有且僅有3個極值點=0有3個根,則或,方程有兩個非零實根,所以或而當(dāng)或時可證函數(shù)有且僅有3個極值點其它例題:(一)最值問題與主元變更法的例子.已知定義在上的函數(shù)在區(qū)間上的最大值是5,最小值是-11.(Ⅰ)求函數(shù)的解析式;(Ⅱ)若時,恒成立,求實數(shù)的取值范圍.解:(Ⅰ) 令=0,得 因為,所以可得下表:0+0↗極大↘ 因此必為最大值,∴因此, , 即,∴,∴ (Ⅱ)∵,∴等價于, 令,則問題就是在上恒成立時,求實數(shù)的取值范圍,為此只需,即, 解得,所以所求實數(shù)的取值范圍是[0,1].(二)根分布與線性規(guī)劃例子例:已知函數(shù)(Ⅰ) 若函數(shù)在時有極值且在函數(shù)圖象上的點處的切線與直線平行, 求的解析式;(Ⅱ) 當(dāng)在取得極大值且在取得極小值時, 設(shè)點所在平面區(qū)域為S, 經(jīng)過原點的直線L將S分為面積比為1:3的兩部分, 求直線L的方程.解: (Ⅰ). 由, 函數(shù)在時有極值 ,∴ ∵ ∴ 又∵ 在處的切線與直線平行,∴ 故 ∴ ……………………. 7分 (Ⅱ) 解法一: 由 及在取得極大值且在取得極小值,∴ 即 令, 則 ∴ ∴ 故點所在平面區(qū)域S為如圖△ABC, 易得, , , , , 同時DE為△ABC的中位線, ∴ 所求一條直線L的方程為: 另一種情況設(shè)不垂直于x軸的直線L也將S分為面積比為1:3的兩部分, 設(shè)直線L方程為,它與AC,BC分別交于F、G, 則 , 由 得點F的橫坐標(biāo)為: 由 得點G的橫坐標(biāo)為: ∴ 即 解得: 或 (舍去) 故這時直線方程為: 綜上,所求直線方程為: 或 .…………….………….12分(Ⅱ) 解法二: 由 及在取得極大值且在取得極小值,∴ 即 令, 則 ∴ ∴ 故點所在平面區(qū)域S為如圖△ABC, 易得, , , , , 同時DE為△ABC的中位線, ∴所求一條直線L的方程為: 另一種情況由于直線BO方程為: , 設(shè)直線BO與AC交于H , 由 得直線L與AC交點為: ∵ , , ∴ 所求直線方程為: 或 (三)根的個數(shù)問題例 已知函數(shù)的圖象如圖所示。 (Ⅰ)求的值;(Ⅱ)若函數(shù)的圖象在點處的切線方程為,求函數(shù)f ( x )的解析式;(Ⅲ)若方程有三個不同的根,求實數(shù)a的取值范圍。解:由題知:(Ⅰ)由圖可知 函數(shù)f ( x )的圖像過點( 0 , 3 ),且= 0 得 (Ⅱ)依題意 = – 3 且f ( 2 ) = 5 解得a = 1 , b = – 6 所以f ( x ) = x3 – 6x2 + 9x + 3 (Ⅲ)依題意 f ( x ) = ax3 + bx2 – ( 3a + 2b )x + 3 ( a>0 ) = 3ax2 + 2bx – 3a – 2b 由= 0b = – 9a ① 若方程f ( x ) = 8a有三個不同的根,當(dāng)且僅當(dāng) 滿足f ( 5 )<8a<f ( 1 ) ② 由① ② 得 – 25a + 3<8a<7a + 3<a<3 所以 當(dāng)<a<3時,方程f ( x ) = 8a有三個不同的根。………… 12分(四)根的個數(shù)問題例:已知函數(shù) (1)若函數(shù)在處取得極值,且,求的值及的單調(diào)區(qū)間; (2)若,討論曲線與的交點個數(shù). 解:(1)………………………………………………………………………2分令得令得∴的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為…………5分(2)由題得即令……………………6分令得或……………………………………………7分當(dāng)即時-此時,,有一個交點;……………………
點擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1