【總結(jié)】?注:證明等積式的一般步驟:?1.先把等積式轉(zhuǎn)化為比例式;?2.觀察比例式的線段確定可能相似的兩個三角形;?3.再找這兩個三角形相似所需的條件.222(1)(2)(3)BCBDABACADABCDADBD??????射影定理:在直角三角形
2025-08-05 10:28
【總結(jié)】相似三角形的判定與性質(zhì)以及應用考點一:相似三角形的判定與性質(zhì)1.如圖,在△ABC中,AB=AC,點E在邊BC上移動(點E不與點B,C重合),滿足∠DEF=∠B,且點D、F分別在邊AB、AC上.(1)求證:△BDE∽△CEF;(2)當點E移動到BC的中點時,求證:FE平分∠DFC.2.如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,
2025-08-05 10:39
【總結(jié)】11、熟練掌握相關定義與定理;2、熟練應用相似三角形的性質(zhì)與判定定理;3、熟練掌握常用解題方法與分析方法。教學重點相似三角形的性質(zhì)及判定方法。教學難點相似三角形的性質(zhì)和判定方法的應用。新課內(nèi)容相似三角形判定與性質(zhì)一、【比例線段和三角形一邊的平行線知識要點】1
2025-01-09 04:59
【總結(jié)】相似三角形的性質(zhì)識別特征對應邊上的高對應角的角平分線對應邊上的中線課堂練習(1)周長課后小結(jié)(2)面積夜色的校園多美,是我們讀書求學的好地方。相似三角形的識別問:相似三角形的識別方法有哪些?證二組對應角相等證三組對應邊成比例證二組對應邊成比例
2025-07-23 21:07
【總結(jié)】相似三角形的判定(說課稿)南漳縣高級中學陳應宏一、教材分析二、教學方法三、學法指導四、教學過程五、教學評價一、教材分析(一)、教材的地位和作用“探索相似三角形的條件”既是三角形基本概念和性質(zhì)的延伸和全等三角形的拓展,又是今后證明線段成比例,研究相似多邊形性質(zhì)的重要工具.因此是
2025-07-20 04:14
【總結(jié)】尋找相似三角形1、定義(極少用于證明)2、預備定理(與平行有關)3、兩角對應相等4、兩邊對應成比例且夾角相等(注意按邊的大小求比)5、三邊對應成比例(注意按邊的大小求比)6、相似三角形的傳遞性你能說出判定
2025-10-31 01:48
【總結(jié)】1.在迎接十運會召開的日子里,小王用兩根長為40cm和一根長為50cm的木料,做了一個等腰三角形的花架,記為△ABC。小張正好有兩根長為20cm的木料和一根長為25cm的木料,用它們也做了一個等腰三角形花架,記為△DEF,請問,這兩個三角形相似嗎?2、
2025-10-31 01:21
【總結(jié)】第一篇:《相似三角形的判定》說課稿 《相似三角形的判定》說課稿 一、說教材 《相似三角形的判定》是華東師大版九年級上冊中繼學生學習了相似圖形相似圖形的性質(zhì)判定、相似三角形之后的一個學習內(nèi)容。它為...
2024-11-18 22:25
【總結(jié)】相似三角形性質(zhì)的練習一.選擇題(共5小題)1.如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( ?。〢.①和② B.②和③ C.①和③ D.②和④2.如圖,D、E分別是AB、AC上兩點,CD與BE相交于點O,下列條件中不能使△ABE和△ACD相似的是( ?。〢.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:A
2025-03-25 06:31
【總結(jié)】§第一課時學習目標知識與技能理解并掌握相似三角形的對應線段(高、中線、角平分線)之間的關系,掌握定理的證明方法,并能靈活運用相似三角形的判定定理和性質(zhì),提高分析和推理的能力。過程與方法在對性質(zhì)定理的探究中,學生經(jīng)歷“觀察--猜想--論證--歸納”的過程,培養(yǎng)學生主動探究、合作交流的習慣和嚴謹治學的態(tài)度,并在其中體會類比的數(shù)學思想,培養(yǎng)學生大膽猜想、勇于探索、
2025-04-17 07:24
【總結(jié)】啟真學堂相似三角形的判定與性質(zhì)綜合運用經(jīng)典題型考點一:相似三角形的判定與性質(zhì):例1、如圖,△PCD是等邊三角形,A、C、D、B在同一直線上,且∠APB=120°.求證:⑴△PAC∽△BPD;⑵CD2=AC·BD.例2、如圖,在等腰△ABC中,∠BAC=90°,AB=AC=1,點D是BC邊上的一個動點(不與B、C重合),在
【總結(jié)】第一篇:相似三角形的判定和判定方法 相似三角形的判定和判定方法 相似三角形的判定 ,且夾角相等 ,所構(gòu)成的三角形與原三角形相似。 相似三角形的判定方法 根據(jù)相似圖形的特征來判斷。(...
2025-10-20 03:19
【總結(jié)】2016專題:《全等三角形證明》1.已知:D是AB中點,∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點,求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
2025-03-24 07:41
【總結(jié)】......成功源于努力!相似三角形的判定(提高) 一、選擇題 1.已知△A1B1C1與△A2B2C2的相似比為4:3,△A2B2C2與△A3B3C3的相似比為4:5,則△A1B1C1與△A3B3C3的相似比
【總結(jié)】......知識點:相似三角形1、相似三角形1)定義:如果兩個三角形中,三角對應相等,三邊對應成比例,那么這兩個三角形叫做相似三角形。幾種特殊三角形的相似關系:兩個全等三角形一定相似。兩個等腰直角三角形一定
2025-03-25 06:32