【總結(jié)】考點聚焦考點1二次函數(shù)的概念一般地,形如________________(a、b、c是常數(shù),a≠0)的函數(shù)稱為二次函數(shù).概念點撥:(1)等號左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.(2)二次項系數(shù)a≠0.考點聚焦歸類探究y=ax2+bx+c(1)若y=(m+1)x
2024-11-22 02:30
【總結(jié)】二次函數(shù)的圖像【學(xué)習(xí)目標(biāo)】1、會做函數(shù)y=ax2和y=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數(shù)圖象的影響,能正確說出兩函數(shù)的開口方向,對稱軸和頂點坐標(biāo);2、了解拋物線y=ax2上下平移規(guī)律;3、熟練掌握二次函數(shù)的性質(zhì);4、應(yīng)用二次函數(shù)解決實際問題?!局饕拍睢俊?】二次函數(shù)的圖像二次函數(shù)的圖像是一條關(guān)于對稱的曲線
2025-05-16 02:58
【總結(jié)】二次函數(shù)的圖象和性質(zhì)二次函數(shù)倍速課時學(xué)練如圖:正方體的六個面全是全等的正方形如圖,設(shè)正方體的棱長為x,表面積為y.y=6x2①顯然對于x的每一個值,y都有一個對應(yīng)值,即y是x的函數(shù),它們具體的關(guān)系可以表示為倍速課時學(xué)練問題1多邊形的對角線數(shù)d與邊數(shù)n
2024-11-22 02:31
【總結(jié)】二次函數(shù)y=ax2的圖象和性質(zhì)xy一.平面直角坐標(biāo)系:1.有關(guān)概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內(nèi)點的坐標(biāo):3.坐標(biāo)平面內(nèi)的點與有序?qū)崝?shù)對是:一一對應(yīng).坐標(biāo)平面內(nèi)的任意一點M,都有
2024-11-21 23:05
【總結(jié)】二次函數(shù)的圖象與性質(zhì)皖考解讀皖考解讀考點聚焦皖考探究當(dāng)堂檢測考點考綱要求年份題型分值預(yù)測熱度二次函數(shù)的概念了解★二次函數(shù)的圖象和性質(zhì)掌握2020選擇題4分★★★2020解答題5分2020選擇題4分2020解答題3
2024-11-22 00:36
【總結(jié)】二次函數(shù)的圖像與性質(zhì)一.拋物線y=ax2+bx+c(a≠0)的性質(zhì):a、b、c的代數(shù)式作用說明a1.a的正負(fù)決定拋物線開口方向;2.決定拋物線開口大小。a>0開口向_____a<0開口向_____b決定對稱軸的位置,對稱軸為直線a、b同號對稱軸
2025-07-18 06:24
【總結(jié)】題課題二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)第1課時8教教學(xué)目標(biāo)知識與技能1)掌握二次函數(shù)的圖象和性質(zhì),運用配方法求解二次函數(shù)的對稱軸、頂點、y隨x的變化情況。數(shù)學(xué)思考1)通過二次函數(shù)頂點式的圖象和性質(zhì)討論二次函數(shù)y=ax2+bx+c一般形式的圖象性質(zhì)。問題解決1)通過對給定的一般二次函數(shù)形式進行配方得到頂點
2025-04-16 12:39
【總結(jié)】二次函數(shù)??khxay???2的圖象(一)【學(xué)習(xí)目標(biāo)】1.知道二次函數(shù)kaxy??2與2axy?的聯(lián)系.kaxy??2的性質(zhì),并會應(yīng)用;【學(xué)法指導(dǎo)】類比一次函數(shù)的平移和二次函數(shù)2axy?的性質(zhì)學(xué)習(xí),要構(gòu)建一個知識體系?!緦W(xué)習(xí)過程】一、知識鏈接:直線12??xy可以看做是由直線xy2?
2024-11-22 03:15
【總結(jié)】二次函數(shù)的概念—知識講解(提高)【學(xué)習(xí)目標(biāo)】、函數(shù)值、自變量、因變量等基本概念;——解析法、列表法和圖像法;,并寫出自變量的取值范圍;,能夠表示簡單變量之間的二次函數(shù)關(guān)系.【要點梳理】要點一、函數(shù)的概念一般地,在一個變化過程中,如果有兩個變量x,y,對于自變量x在某一范圍內(nèi)的每一個確定值,y都有惟一確定的值與它對應(yīng),那么就說y是x的函數(shù).對于自變量x在可以取
2025-04-04 04:24
【總結(jié)】y=ax2的圖象和性質(zhì)xyTaibaizhongxuecaojian2020年元月2日xy=x2y=-x2..................0-2-112函數(shù)圖象畫法列表描點連線01414描點法
2024-11-12 00:08
【總結(jié)】反比例函數(shù)1、反比例函數(shù)圖象:反比例函數(shù)的圖像屬于以原點為對稱中心的中心對稱的雙曲線??反比例函數(shù)圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標(biāo)軸相交(K≠0)。2、性質(zhì):0時,圖象分別位于第一、三象限,同一個象限內(nèi),y隨x的增大而減小;當(dāng)k0
2025-05-16 02:18
【總結(jié)】WORD格式整理版§復(fù)習(xí)目標(biāo)1.掌握一元二次函數(shù)圖象的畫法及圖象的特征2.掌握一元二次函數(shù)的性質(zhì),能利用性質(zhì)解決實際問題3.會求二次函數(shù)在指定區(qū)間上的最大(?。┲?.掌握一元二次函數(shù)、一元二次方程的關(guān)系。知識回顧1.函數(shù)叫做一元二次函數(shù)。2.一元二次函數(shù)的圖象是一條拋物線。3.任何一個
2025-07-21 18:34
【總結(jié)】......二次函數(shù)的圖象與基本性質(zhì)(一)、知識點回顧【知識點一:二次函數(shù)的基本性質(zhì)】y=ax2y=ax2+ky=a(x-h(huán))2y=a(x-h(huán))2+ky=ax2+bx+c開口方向頂點
2025-06-23 21:41
【總結(jié)】......專題講解——二次函數(shù)的圖象知識點回顧:1.二次函數(shù)解析式的幾種形式:①一般式:(a、b、c為常數(shù),a≠0)②頂點式:(a、h、k為常數(shù),a≠0),其中(h,k)為頂點坐標(biāo)。③交點式:,其中是拋
2025-03-24 06:25
【總結(jié)】各類二次函數(shù)的圖像與性質(zhì)復(fù)習(xí)課都川中學(xué)王建鋒y=ax2a0a0圖象開口對稱軸頂點增減性二次函數(shù)y=ax2的性質(zhì)開口向上開口向下a的絕對值越大,開口越小y軸頂點坐標(biāo)是原點(0,0)頂點是最低點頂點是最高點在對稱軸左側(cè)遞減
2024-11-22 00:04