freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

sos方法證明不等式(留存版)

2024-10-28 23:36上一頁面

下一頁面
  

【正文】 c2Sb179。0, 那么S=AB=S222a(bc)+Sb(ca)+Sc(ab)179。0,(2)若a163。且滿足若a163。aab(3)sc+sb179。229。1x,求證0<A<1證明: ∵x,y∈R+,且xy=1,x=secθ,y=tanθ,(0<θ<xy)∴ A=(secθ1secθ(tanθ+1tanθ2bc+b2x3+x2 證明 n(n+1)n+1+++....+(n1).分析 題中含n,但此題用數(shù)學(xué)歸納法不易證明,++188。1111111++++abcabc1a1b1c即 ++179。3x3按極限的定義,對于e=,取d=2(1+2)當(dāng)|x|d=2(1+2)有f(x)11e= , g(x)3414即 0f(x)71 從而f(x)g(x),(x)12(10)利用平分法證明不等式 若x0,i=1,2,3,且229。180。)=222。1); 已知xaxa2+ybyb=1,可設(shè)x=acosq,y=bsinq;已知=1,可設(shè)x=asecq,y=btanq;六、數(shù)學(xué)歸納法法:與自然數(shù)n有關(guān)的許多不等式,可考慮用數(shù)學(xué)歸納法證明,:第一,:設(shè)P(n)是與n有關(guān)的命題,則(1)、設(shè)P(n0)成立,且對于任意的kn0,從P(k)成立可推出P(k+1)成立,則P(n)對所有大于n0的n都成立.(2)、設(shè)m是任給的自然數(shù),若P(1)成立,且從P(k)(1163。225122220。249。230。0,則(A+B)n179。0,即y179。2248。(a+2)+(b+2)249。252236。a2+ab+b2=a+b, 于是(a+b)2 a2+ab+b2=a+b,則(a+b)1,又(a+b)24ab,(a+b)2 而(a+b)=a+2ab+b=a+b+aba+b+422243即(a+b)2a+b,所以(a+b), 綜上所述, 1a+b(6)向量法向量這部分知識由于獨有的形與數(shù)兼?zhèn)涞奶攸c,使得向量成了數(shù)形結(jié)合的橋梁,若借助向量的數(shù)量積的性質(zhì), 求證:求證1≤ 1x2x≤2++179。,因此AB,23452n2n+113242n1242n2n1)(180。247。(共13頁)數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級年論文(設(shè)計)(1+11112)(1+)=1+++(9)利用極限證明不等式[2]證明:當(dāng)x2(1+2)時,有(2x1)+2(2x3)+3(2x5)+....+xx3證: 在x0的情況下討論,令f(x)=(2x1)+(2x3)+3(2x5)+....+x,g(x)=x3則 f(x)=x(x+1)(2x+1),6x(x+1)(2x+1)f(x)16于是 lim =lim=x174。a2+b2+c2+d2ab+bc+cd+da.②若a,b同號,則+≥2;若a,b,c均為正數(shù),則++≥+b2a+b2 ③若是正數(shù),則≥≥ab≥(當(dāng)且僅當(dāng)a=b時等號1122+abbaabbacbac成立)a2+b2+c2a+b+c3 若a,b,c是正數(shù),則≥3abc≥11133++abc(當(dāng)且僅當(dāng)a=b=c時等號成立) 若a,b,c0,且a+b+c=1,求證 ++179。此方法靈活性大,需反復(fù)練習(xí).(3)分析法:當(dāng)綜合法較困難或行不通時,可考慮此法,(共13頁)AB數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級年論文(設(shè)計)(4)數(shù)學(xué)歸納法:凡與自然數(shù)n有關(guān)的不等式,可考慮此法,但有時使用起來比較困難,探求解題途徑 求證 1+2x4179。2k+3〈二〉(2k+2)2>(2k+1)(2k+3)〈二〉4k2+8k+4>4k2+8k+3〈二〉4>3③∵③成立 ∴②成立,即當(dāng)n=k+1時,原不等式成立由(1)(2)證明可知,對一切n≥2(n∈N),原不等式成立練習(xí)8:已知n∈N,且n>1,求證: 1n+1+1n+2+…+12n>13249構(gòu)造法根據(jù)求證不等式的具體結(jié)構(gòu)所證,通過構(gòu)造函數(shù)、數(shù)列、合數(shù)和圖形等,達(dá)到證明的目的,這種方法則叫構(gòu)造法。例6:已知a、b、c、d都是正數(shù)求證: 1<ba+b+c+cb+c+d+dc+d+a+ad+a+b<2分析:觀察式子特點,若將4個分式商為同分母,問題可解決,要商同分母除通分外,還可用放縮法,但通分太麻煩,故用放編法。9+k22abca+b+c,b,c,試求最優(yōu)常數(shù)k,使得229。b179。0且Sa+2Sb,Sc+2Sb179。0性質(zhì)一:若Sa,Sb,Sc179。c或a179。0那么 S=AB=S222a(bc)+Sb(ca)+Sc(ab)179。ab)(229。例4,設(shè)a0,b0,a+b=1,證明:(a+1a)2+(B+1b)2≥252證明:∵ a0,b0,a+b=1∴ab≤14或1ab≥4左邊=4+(a2+b2)=1a2+1b2=4+[(a+b)22ab]+(a+b)22aba2b2=4+(12ab)+12aba2b2≥4+(112)+8=252練習(xí)3:已知a、b、c為正數(shù),n是正整數(shù),且f(n)=1gan+bn+3求證:2f(n)≤f(2n)4分析法從理論入手,尋找命題成立的充分條件,一直到這個條件是可以證明或已經(jīng)證明的不等式時,便可推出原不等式成立,這種方法稱為分析法。例10:設(shè)n∈N,且n>1,求證:(1+13)(1+15)…(1+12n1)>2n+12分析:觀察求證式與n有關(guān),可采用數(shù)學(xué)歸納法證明:(1)當(dāng)n=2時,左= 43,右=52∵43>52∴不等式成立(2)假設(shè)n=k(k≥2,k∈n)時不等式成立,即(1+13)(1+15)…(1+12k1)>2k+12 那么當(dāng)n=k+1時,(1+13)(1+15)…(1+12k1)(1+12k+1)>2k+1260的為“及格”; 第四篇:不等式的一些證明方法數(shù)學(xué)系數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)2009級年論文(設(shè)計)不等式的一些證明方法[摘要]:不等式是數(shù)學(xué)中非常重要的內(nèi)容,不等式的證明是學(xué)習(xí)中的重點和難點,本文除總結(jié)不等式的常規(guī)證明方法外,給出了不等式相關(guān)的證明方法在具體實例中的應(yīng)用.[關(guān)鍵詞] 不等式。+ann≤a21+a2+188。2abc,c(a+b)179。R 且a+b+c=1,求證:a2+b2+c2≥.證:a=+α,b=+β,c=+γ, 因為a+b+c=1,所以 a+b+g=0于是有a2+b2+c2=+(a+b+g)+(a2+b2+g2)≥.(2)反證法先假設(shè)所要證明的不等式不成立,即要證的不等式的反面成立,然后從這個假設(shè)出發(fā)進(jìn)行正確的推理,最終推出與已知條件或已知真命題相矛盾的結(jié)論,從而斷定假設(shè)錯誤,[5]求證:由小于1的三個正數(shù)a,b,c所組成的三個積(1a)b,(1b)c,(1c)a,不能同時大于證:(反證法)假設(shè)(1a)b,(1b)c,(1c)a都大于則有(1a)b(1b)c(1c)a2***31314141 ① 641a+a246。188。(4)判別式法12342n11 2n2n+1適用于含有兩個或兩個以上字母不等式,而另一邊是關(guān)于某字母的二次式時,[6]x2+x+113求證:≤2≤.x+122x2+x+1 證: 設(shè)f(x)=y=2,則(1y)x2+x+1y=0,所以x206。證法二:(分析法)252(當(dāng)且僅當(dāng)a=b=時,取等號).(a+2)2+(B+2)179。179。2231。232。AniBi179。+231。a+(1a)+4+8179。k的n成立可推出P(k+1)成立,1)成立,則P(n)對所有n成立.(5)、(最小數(shù)原理)自然數(shù)集的非空子集中必有一個最小數(shù).(6)、若P)且若P(k),P(k+1)成立可推出P(k+2)成立,則P(n)1(,P(2)成立,對所有n成立.(7)、(無窮遞降法)若P(n)對某個n成立可推出存在n1n,使得P(n1)成立,則P(n),還有螺旋歸納法(又叫翹翹板歸納法):設(shè)有兩個命題P(n),Q(n),若
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1