【摘要】3.2對(duì)數(shù)函數(shù)3.2.1對(duì)數(shù)第1課時(shí)對(duì)數(shù)的概念1.理解對(duì)數(shù)的概念.2.能熟練地進(jìn)行指數(shù)式與對(duì)數(shù)式的互化.3.掌握常用對(duì)數(shù)與自然對(duì)數(shù)的定義.4.了解對(duì)數(shù)恒等式.1.對(duì)數(shù)的概念一般地,如果ab=N(a>0,a≠1),那么數(shù)b叫做以a為底N的對(duì)數(shù),記為logaN=b,其中a叫做
2024-11-28 18:28
【摘要】第2課時(shí)對(duì)數(shù)的運(yùn)算性質(zhì)1.理解對(duì)數(shù)的運(yùn)算性質(zhì),能靈活準(zhǔn)確地進(jìn)行對(duì)數(shù)式的化簡(jiǎn)與計(jì)算;2.了解對(duì)數(shù)的換底公式,并能將一般對(duì)數(shù)式轉(zhuǎn)化為自然對(duì)數(shù)或常用對(duì)數(shù),從而進(jìn)行簡(jiǎn)單的化簡(jiǎn)與證明.1.對(duì)數(shù)的運(yùn)算法則如果a>0,且a≠1,M>0,N>0,n∈R,那么:指數(shù)的運(yùn)算法則?對(duì)數(shù)的運(yùn)算法則①am·
2024-11-28 13:35
【摘要】(1)函數(shù)是描述事物運(yùn)動(dòng)變化規(guī)律的數(shù)學(xué)模型.如果了解了函數(shù)的變化規(guī)律,那么也就基本把握了相應(yīng)事物的變化規(guī)律.因此研究函數(shù)的性質(zhì),就非常重要.觀察下列各個(gè)函數(shù)的圖象,你能說(shuō)說(shuō)它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律?()fxx?2()fxx?函數(shù)f(x)=x的圖象由左
2024-11-30 11:22