【正文】
p e n d e n t a n d i s c o n s t a n t , = (T + L)i2???The standard deviation of a sequence of random events equals the square root of the sum of the variances. Economic production lot, EPL 經(jīng)濟(jì)訂貨提前期 )(pDHDSEPL??12 最大最小系統(tǒng) 是一種固定間隔期系統(tǒng),只不過它需要確定一個(gè)訂貨點(diǎn) s。獨(dú)立需求庫存控制 庫存管理概述 庫存問題的基本模型 Concept of Inventory庫存的概念 Inventory庫存 ?Inventory is the stock of any item or resource used in an anization. These items or resources can include: raw materials, finished products, ponent parts, supplies, and workinprocess. —— 是具有經(jīng)濟(jì)價(jià)值的任何物品的停滯與貯藏 。 FixedOrder Quantity Models: Model Assumptions (Part 2) 定量訂貨模型的假設(shè)前提 ?Inventory holding cost is based on average 水平計(jì)算 ?Ordering or setup costs are 貨和調(diào)整成本是常數(shù) ?All demands for the product will be satisfied. (No back orders are allowed.) 所有產(chǎn)品需求是可預(yù)測的 Basic FixedOrder Quantity Model and Reorder Point Behavior 基本定量訂貨模型和再訂貨點(diǎn) R = Reorder point 再訂貨點(diǎn) Q = Economic order quantity L = Lead time訂貨提前期 L L Q Q Q R Time Number of units on hand Cost Minimization Goal 成本最小化目標(biāo) Ordering Costs 訂貨成本 Holding Costs存儲(chǔ)成本 QOPT Order Quantity (Q)訂貨量 C O S T 成本 Annual Cost of Items (DC) 年購貨成本 Total Cost總成本 By adding the item, holding, and ordering costs together, we determine the total cost curve, which in turn is used to find the Qopt inventory order point that minimizes total costs. Basic FixedOrder Quantity (EOQ) Model Formula 基本定量訂貨模型的計(jì)算 T C = D C + DQ S + Q2 HTotal Annual Cost = Annual Purchase Cost Annual Ordering Cost Annual Holding Cost + + TC = Total annual cost 年總成本 D = Demand需求量 C = Cost per unit單位成本 Q = Order quantity訂貨量 S = Cost of placing an order or setup cost一次訂貨費(fèi)用 R = Reorder point再訂貨點(diǎn) L = Lead time訂貨提前期 H = Annual holding and storage cost per unit of inventory單位存儲(chǔ)費(fèi)用 Economic order quantity, EOQ 經(jīng)濟(jì)訂貨批量 HDSEOQ2?CT = CH + CR + CP =H(Q/2) + S(D/Q) + pD 再訂貨點(diǎn) qTR ??訂 定期定貨系統(tǒng) 定期定貨系統(tǒng)只限于在預(yù)定時(shí)期末進(jìn)行訂貨 , 是由時(shí)間來驅(qū)動(dòng)的 。 , April 1, 2023 ? 雨中黃葉樹,燈下白頭人。 。 2023年 4月 1日