freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

lecturenotesforcomputationtheory(留存版)

2024-12-11 15:33上一頁面

下一頁面
  

【正文】 for arbitrary big N. Univ. 可計(jì)算理論 2020/11/17 56/77 (Un)putability of K 自學(xué)或略講 如何估計(jì) X的復(fù)雜度 K(x)? ? K(x) ? n 只對少數(shù)特殊的串成立,有規(guī)律或結(jié)構(gòu) 如 全 0串, 01交替串,等等, ? 對于描述 K(x) ? n 的串應(yīng)該證明 較小的圖靈機(jī)的確不能產(chǎn)生它。 例: ASCII用碼代替 字符位圖 設(shè) N=2m,N個(gè)符號只要編碼成長度為 log(N) =m的串 1024個(gè)串用 10位編碼就可區(qū)別了, Hence K(x) ? cS + log(N) = cS + log(|S|), with constant cS depending on the description of S. Univ. 可計(jì)算理論 2020/11/17 45/77 Frequency Compression 頻率壓縮 Let x ?{0,1}n with 75% zeros and 25% ones. 高頻率者用短碼,低頻率用長碼,使得總體碼長較小 Consider the set S?{0,1}n of all such strings. The description of S requires ? c + 2log(n) bits. The size of S is |S| ? . The description of x requires no more than c + 2log(n) + log(|S|) = c + 2log(n) + bits. For large enough n: K(x) ? (approximately). Univ. 可計(jì)算理論 2020/11/17 46/77 Shannon Entropy of Strings 桑龍 串熵 ep217 We can press a bitstring ?{0,1}n, depending on the 0/1 distribution. The Shannon entropy of this distribution (p,1–p) gives an upper bound on the Kplexity. Univ. 可計(jì)算理論 2020/11/17 47/77 Best Splits (Cont.) 補(bǔ)充 熵概念 ? 用 8=23個(gè)字符( a1,..a8)寫密碼信 , 需要壓縮編碼,節(jié)約資源 ? 用 huffman編碼,編碼長度與使用頻度反比,用得頻繁的碼長短 , ? 設(shè) 8 各字符出現(xiàn)的為頻率分布如表。符合這一深層次的信息壓縮定理。| Winzip|+|| 能描述 Some details need to be sorted out first though… 又例:某個(gè)問題用億次機(jī)算,最少要用 1個(gè)月 TM M time 規(guī)律的描述和輸入 Univ. 可計(jì)算理論 2020/11/17 15/77 ‘ Turing Describable’ ep215 cp141 重復(fù) 17次 01 TM M w 說明可用 Mw的長度來描述信息量 X 的 復(fù)雜度(信息量)為 Min ({ |M|+|w| :: x=M(w), M is TM } ) 例 用 Winzip 壓縮 成為 , 121K 一個(gè)圖靈機(jī) M ,M 長度 2020 , 一個(gè)串 w 復(fù)雜度2020,且不可壓縮, M 一定不能描述 W. 適當(dāng)規(guī)定 大小 概念。 ? 自然現(xiàn)象中 耗散型,增加熵的多,作清潔和生命現(xiàn)象使無序到有序,減少熵(不考慮能量的耗散) Univ. 可計(jì)算理論 2020/11/17 51/77 An Application of KComplexity K復(fù)雜度的應(yīng)用 ep217 Kolmogorov plexity gives a rigorous definition for the notion of order or regularity. 嚴(yán)格描述了階或正則概念 The TM model gives us the most general way of describing mathematical objects like primes, puter programs, or theories. 圖靈機(jī)給出描述數(shù)學(xué)對象如素?cái)?shù)、程序。del‘s inpleteness thm. 給定 Th(N,+,?),設(shè) A是 找出其中完全公理和推導(dǎo)到規(guī)則的 程序( TM), AAttempt。 由前面結(jié)論,知道小馬不能拉大車。理論的一一般模型 Together with the inpressibility theorem, this allows us to make general statements about these ,可得出一些一般的性質(zhì) Univ. 可計(jì)算理論 2020/11/17 53/77 Counting Primes less than N 估計(jì) 比 N 小的素?cái)?shù)的個(gè)數(shù) Q: How many primes are there less than N? Let p1,…,p m be the m primes ? N. We know that we can describe N by: 因子分解 m21 eme2e1 pppN ???Hence e1,…,e m gives a description of N. Furthermore, for each j we have: ej ? log(N). Thus e1,…,e m requires ? m增加能力后, EXE的字節(jié)數(shù)增加了。 } How does the M,y encoding work? Univ. 可計(jì)算理論 2020/11/17 17/77 Measuring the size of (M,y) We want to express the size of the TM M and y in a number of bits. But how many bits is a specific (M,y) pair? Other key idea: We fix a universal Turing machine U that,on input M,y, simulates the TM M on y (yielding output x). 為了 一致、公平 地比較,用通用圖靈機(jī) U,模擬 M on y int U (M,y) { return ( M(y) )。 一個(gè)圖靈機(jī) M ,M 長度 2020 , 一個(gè)串 w 復(fù)雜度2020,且不可壓縮, M 一定不能描述 W. 我們稱為 小馬 拉 大車 這一直觀感覺 在后面有用 許多軟件。 1k長的程序不能描述 windows Univ. 可計(jì)算理論 2020/11/17 41/77 Inpressibility 不可壓縮的串 ep217,cp149 Theorem : For every n there exists at least one inpressible string x?{0,1}n with K(x)?n. 存在任意長的不可壓縮串 Proof (by pigeonhole argument): 用 鴿巢原理 – There are 2n different strings x in {0,1}n. – There is one description of length 0, two descriptions of length 1,…, and 2 n–1 descriptions of length n–1. In total: 2n–1 descriptions of length smaller than , there has to be an x?{0,1}n that has a minimal description of at least n bits. 長度從 1(n1)的串比長度為 n的串的個(gè)數(shù)少 Univ. 可計(jì)算理論 2020/11/17 42/77 Inpressibility 不可壓縮的串 ep217,cp149 Theorem : For every n there exists at least one inpressible string x?{0,1}n with K(x)?n. 存在任意長的不可壓縮串 Proof (by pigeonhole argument): 用 鴿巢原理 – There are 2n different strings x in {0,1}n. 1+2+4+…,+ 2 n–1= 2n–1 2n 長度從 1(n1)的串的總數(shù) , 長度為 n的串的總數(shù) 目標(biāo) 待壓 Univ. 可計(jì)算理論 2020/11/17 43/77 Indexing Trick Compression idea: If S is a small set that is easy to describe, then we can describe an x?S by: description of enumeration of S index of x in S Let S = {s1,…,s N}. We can indicate every x?S by the 1?j?N such that sj=x. 用編號 j代替字符串 sj , 就短多了。log(log(N)). The total description MyN requires no more than c + mdel (3)自學(xué) 1) Enumerate a statements that follows from A 2) If this statement is of the form ―K(x) n‖, then print(x) and stop 3) Otherwise: generate next statement and go to 2) The above program can be expressed with less than 2|A| + 2log(n) + c bits. (The constant c does not depend on A or n.) Also, the program outputs a string x with K(x)n. Contradiction if n 2|A| + 2log(n) + c. 下頁 Univ. 可計(jì)算理論 2020/11/17 66/77 Compression and G246。 與最小描述的定義矛盾。 情況越混亂, 熵 H越大,要表達(dá)它所需要的平均碼長越大, ? 春秋戰(zhàn)國,等兵力分布時(shí),戰(zhàn)爭多,混亂,熵大,后來逐漸統(tǒng)一,熵變小,信息變小 (戰(zhàn)爭故事也不多,不精彩了)秦統(tǒng)一中國后,國家對立信息的 編碼只要 0位即可 ? 直觀感覺:要說清 混亂的事情,比較費(fèi)口舌(費(fèi)信息量) ? 男生寢室的熵比較大,例如一雙鞋子分居兩地,敘述起來要多說些話,作清潔后 熵變小。符合這一深層次的信息壓縮定理。 an irregular one has no such summary. Univ. 可計(jì)算理論 2020/11/17 10/77 Regularity We can give a short description of ―0101010101 010101010101010101010101‖ by ―17 times 01‖. For the other ―01011101010010100011100011 00011011‖ this seems more problematic. Suggests: 規(guī)律性 使得描述較短(有規(guī)律的,信息量較?。? A regular string is a string that has a sho
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1