【正文】
13] with saturation constraints. Furthermore, most reported designs rely on intelligent control approaches such as Fuzzy Logic Control [1][8][14][17][18][20] and Neural Networks [6][19]. However the majority of the publications mentioned above, has concentrated on kinematics models of mobile robots, which are controlled by the velocity input, while less attention has been paid to the control problems of nonholonomic dynamic systems, where forces and torques are the true inputs: Bloch Manuscript received December 15, 2020 qnd accepted on April 5, 2020. This work was supported in part by the Research Council of DGEST under Grant . The students also were supported by CONACYT with scholarships for their graduate studies. Oscar Castillo is with the Division of Graduate Studies and Research in Tijuana Institute of Technology, Mexico (corresponding author phone: 526646236318。假設(shè)軌跡 q達(dá)到了( 4)式的要求: qd =0sincosdd??100ddwv (4) 用遙控器的局部框架(圖 1中的移動(dòng)坐標(biāo)系),錯(cuò)誤的坐標(biāo)可被定義為: e=Te (qd q),?eeeyx =1000cossin0sincos????? =?????dddyyxx (5) 輔助速度控制著輸入量,其可以對(duì)( 1, a)實(shí)現(xiàn)追蹤。這一著作在某種程度上受到 DGEST—— 一個(gè)在 Grant 。 指導(dǎo)教師評(píng)語(yǔ): 該生的外文翻譯基本正確, 沒(méi)有嚴(yán)重的語(yǔ)法或拼寫錯(cuò)誤,已達(dá)到本科畢業(yè)的水平。這篇論文的其余部分的結(jié)構(gòu)如下:第二部分和第三部分對(duì)問(wèn)題作了簡(jiǎn)潔描述,包括了單輪車移動(dòng)遙控裝置的運(yùn)動(dòng)和動(dòng)力模塊和對(duì)追蹤控制器的介紹。在表格 1中,我們表現(xiàn)了一種直線形式: Rule i: 假如 ev 是 G1 , ew 是 G2 那么 F 是 G3 , N 是 G4 Where G1..G4 are the fuzzy set associated to each variable and i= 1 ... 9. 表 1 模糊尺組 In Table I, N means NEGATIVE, P means POSITIVE and C means ZERO. 在 Matalb實(shí)現(xiàn)的模擬實(shí)驗(yàn)是用來(lái)測(cè)試移動(dòng)式遙控裝置的追蹤控制器(在( 1)中已有定義)。=0sincos??000wv M(q)amp。在以后的工作中,圖 2中的控制結(jié)構(gòu)可以做些擴(kuò)展,比如說(shuō)增加些跟蹤的準(zhǔn)確性或工作性能。追蹤控制器的大體結(jié)構(gòu)見(jiàn)圖 2 我們基于 Kanayama等人提議的程序和 Nelson等人解決運(yùn)動(dòng)模塊的追蹤問(wèn)題,這由 V表示出來(lái)。 在 2020年 12月 15日被視為標(biāo)準(zhǔn)并且在 2020年 3月 5日被公認(rèn)的手稿。 簽名: 年 月 日 附件 1:外文資料翻譯譯文 對(duì)移動(dòng)式遙控裝置的智能控制 —— 使用 2型模糊理論 摘要:我們針對(duì)單輪移動(dòng)式遙控裝置的動(dòng)態(tài)模型開發(fā)出一種追蹤控制器,這種追蹤控制器是建立在模糊理論的 基礎(chǔ)上將運(yùn)動(dòng)控制器和力矩控制器整合起來(lái)的裝置。第四部分用追蹤控制器列舉了些模擬結(jié)果。我們認(rèn)為初始位置 q和 初始速度 v。+V(q,q)v+G(q)=? (1) Where q=? ??,yx T is the vector of generalized coordinates which describes the robot position, (x,y) are the cartesian coordinates, which denote the mobile center of mass and θ is the angle between the heading direction and the xaxis(which is taken counterclockwise form)。計(jì)算機(jī)模擬結(jié)果確定了這臺(tái)控制器可以實(shí)現(xiàn)我們的目標(biāo)。 0)(lim ???? tqq dt ( 3) 為了達(dá)到控制目標(biāo),我們基于 5的步驟,我們得到 τ(t) 利用模糊邏輯控制器( FLC)控制著輪系 ()。而很少有發(fā)表關(guān)注到不完整的動(dòng)力系統(tǒng),即受力和扭矩控制的模塊:布洛克。用計(jì)算機(jī)模擬來(lái)確定追蹤控制器的工作情況和它對(duì)不同航向的實(shí)際用途。第五部分做出了結(jié)論。在圖 5到圖 8中,我們體現(xiàn)了對(duì)于情況 1的模擬結(jié)果。v=? ?w,v T is the vector of velocities, v and w are the linear and angular velocities respectively。從這個(gè)表中我們同樣選擇了不同的速度和位置參數(shù) 表 2 不同模糊控制器實(shí)驗(yàn)仿真 追蹤控制器是將單輪移動(dòng)遙控裝置的模糊邏輯控制器與可測(cè)定點(diǎn)的穩(wěn)定性和速度軌跡的動(dòng)力學(xué)整合起來(lái)的。 ycos? xsin? =0 (2) 移動(dòng)遙控裝置式的追蹤控制器構(gòu)造如下:一條特定的預(yù)想軌跡 q和移動(dòng)遙控裝置的方向,我們必須設(shè)計(jì)出一個(gè)控制器使其適用于合適 的扭矩諸如測(cè)定的位置達(dá)到參考位置(由 3式表示)。 然而上述提到的發(fā)表中大多數(shù)都集中在移動(dòng)式遙控裝置的運(yùn)動(dòng)模塊,即這些模塊是受速度控制的。 關(guān)鍵詞:智能控制、 2型模糊理論、移動(dòng)式遙控裝置 I. 介紹 由于受運(yùn)動(dòng)學(xué)強(qiáng)制約束,移動(dòng)遙控裝置是非完整的系統(tǒng)。 II. 疑難問(wèn)題陳述 A移動(dòng)控制裝置 這個(gè)被看作單輪移動(dòng)控制器的模型(見(jiàn)圖 1),它是由兩個(gè)同軸驅(qū)動(dòng)輪和一個(gè)自由前輪組成。位置和方向錯(cuò)誤分別見(jiàn)圖 5和圖 6,錯(cuò)誤可近似于零。 rR?? is the input vector,M(q)?Rnxn is a symmetric and positivedefinite inertia matrix, V(q,q)?Rnxn is the centripetal and Coriolis matrix,G(q)?Rn is the gravitational vector. Equation () represents the kinematics or steering system of a mobile robot. Notice that the noslip condition imposed a nonholonomic constraint described by (2), that it means that the mobile robot can only move in the direction normal to the axis of the driving wheels. ycos? xsin? =0 (2) B. Tracking Controller of Mobile Robot Our control objective is established as follows: Given a desired trajectory qd(t) and orientation of mobile robot we must design a controller that apply adequate torque τ such that the measured positions q(t) achieve the desired reference qd(t) represented as (3): 0)(lim ???? tqq dt ( 3) To reach the control objective, we are based in the procedure of [5], we deriving a τ(t) of a specific vc(t) that controls the steering system () using a Fuzzy Logic C