freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

南昌市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(及答案)(7)(留存版)

2025-04-01 23:33上一頁面

下一頁面
  

【正文】 由(ab)(a2b2c2)=0,可得:ab=0,或a2b2c2=0,進(jìn)而可得a=b或a2=b2+c2,進(jìn)而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(ab)(a2b2c2)=0,∴ab=0,或a2b2c2=0,即a=b或a2=b2+c2,∴△ABC的形狀為等腰三角形或直角三角形.故選:D.【點睛】本題考查了勾股定理的逆定理以及等腰三角形的判定,解題時注意:有兩邊相等的三角形是等腰三角形,滿足a2+b2=c2的三角形是直角三角形.17.C解析:C【分析】矩形與菱形相比,菱形的四條邊相等、對角線互相垂直;矩形四個角是直角,對角線相等,由此結(jié)合選項即可得出答案.【詳解】A、菱形、矩形的內(nèi)角和都為360176?!嘣赗t△BED中, BD=.故選B.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定與性質(zhì),勾股定理等知識,作輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.27.D解析:D【分析】根據(jù)題意,可分為已知的兩條邊的長度為兩直角邊,或一直角邊一斜邊兩種情況,根據(jù)勾股定理求斜邊即可.【詳解】當(dāng)3和4為兩直角邊時,由勾股定理,得:;當(dāng)3和4為一直角邊和一斜邊時,可知4為斜邊.∴斜邊長為或5.故選:D.【點睛】本題考查了勾股定理,關(guān)鍵是根據(jù)題目條件進(jìn)行分類討論,利用勾股定理求解.28.A解析:A【分析】根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,根據(jù)勾股定理求出BD,得到CD的長,根據(jù)三角形的面積公式計算,得到答案.【詳解】解:∵點D在線段AB的垂直平分線上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面積=CDBC=34=6,∵P是BD的中點,∴S△PBC=S△BCD=3,故選:A.【點睛】本題考查的是線段垂直平分線的性質(zhì)、直角三角形的性質(zhì)、勾股定理,掌握線段垂直平分線上的點到線段兩端點的距離相等是解題的關(guān)鍵.29.B解析:B【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【點睛】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.30.B解析:B【分析】根據(jù)直角三角形的勾股定理,得:兩條直角邊的平方等于斜邊的平方.再根據(jù)正方形的面積公式,知:以兩條直角邊為邊長的正方形的面積和等于以斜邊為邊長的正方形的面積.【詳解】解:A的面積等于10064=36;故選:B.【點睛】本題主要考查勾股定理的證明:以兩條直角邊為邊長的正方形的面積和等于以斜邊為邊長的正方形的面積.?!郆C=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點睛】此題考查了軸對稱﹣線路最短的問題,確定動點P為何位置時 PC+PD的值最小是解題的關(guān)鍵.13.A解析:A【解析】試題解析:如圖,過D作AB垂線交于K,∵BD平分∠ABC,∴∠CBD=∠ABD∵∠C=∠DKB=90176。BA=ED,利用AAS可證△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根據(jù)圖可知從B到E的走法有兩種,分別計算比較即可.【詳解】解:如右圖所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90176。 B.對角線互相平分 C.對角線相等 D.對角線互相垂直18.“折竹抵地”問題源自《九章算術(shù)》中,即:今有竹高一丈,末折抵地,去本四尺,問折者高幾何?意思是:一根竹子,原高一丈,一陣風(fēng)將竹子折斷,其竹梢恰好抵地,抵地處離竹子底部4尺遠(yuǎn)(如圖),則折斷后的竹子高度為多少尺?(1丈=10尺)(  )A.3 B.5 C. D.419.如圖,在平行四邊形ABCD中,∠DBC=45176?!唷鰾OE是直角三角形,設(shè)AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,解得:x=1,∴AB=1.故選D.【點睛】本題考查了利用軸對稱求最值,等腰直角三角形的判定與性質(zhì),勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關(guān)鍵.12.B解析:B【分析】過點C作CO⊥AB于O,延長CO到C′,使OC′=OC,連接DC′,交AB于P,連接CP,此時DP+CP=DP+PC′=DC′的值最?。蒁C=2,BD=6,得到BC=8,連接BC′,由對稱性可知∠C′BA=∠CBA=45176。∠ADE=45176。52+122=132,能構(gòu)成直角三角形,故此選項不符合題意;D.從而證明△BOE是直角三角形,然后設(shè)AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1