【摘要】必修二立體幾何經(jīng)典證明試題1.如圖,三棱柱ABC-A1B1C1中,側棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設知,∴=,即
2025-03-25 02:03
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負向量:兩個模相等且方向相反的向量是互為負向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關鍵在于找出平面內(nèi)的一條直線
2025-07-18 00:17
【摘要】高考文科數(shù)學立體幾何題型與方法(文科)一、考點回顧1.平面(1)平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(2)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣,可根據(jù)公理2證明這些點都在這兩個平面的
2025-01-14 15:13
【摘要】1.[2007年普通高等學校統(tǒng)一考試(海南、寧夏卷)數(shù)學文科第8題,理科第8題]20 20 正視圖20 側視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導學生閱讀教材P42前幾行相關內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-17 00:53