freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

奧數(shù)抽屜原理問題(專業(yè)版)

2025-11-02 11:26上一頁面

下一頁面
  

【正文】 模仿練習(xí)4(1)一個布袋里裝有紅、黃、藍(lán)襪子各5只,問一次至少取出多少只,才能保證每種顏色至少有一只?(2)一布袋中有紅、黃、黑、白四種顏色的小玻璃球各1 0個,每個小球的形狀、大小完全相同,問一次至少取出多少個,才能保證其中至少有四個顏色相同的小球?例題盒子里混裝著5個白色球和4個紅色球,要想保證一次能拿出兩個同顏色的球,至少要拿出多少個球?思路點(diǎn)撥:如果每次拿2個球會有三種情況:(1)一個白球,一個紅球;(2)兩個白球;(3)兩個紅球。解:根據(jù)規(guī)定,多有同學(xué)拿球的配組方式共有以下9種:{足}{排}{藍(lán)}{足足}{排排}{藍(lán)藍(lán)}{足排}{足藍(lán)}{排藍(lán)}以這9種配組方式制造9個抽屜,將這50個同學(xué)看作蘋果=……5由抽屜原理2k=〔 〕+1可得,至少有6人,他們所拿的球類是完全一致的。分析:解這道題,可以考慮先將4與100,7與97,49與55……,這些和等于104的兩個數(shù)組成一組,構(gòu)成16個抽屜,剩下1和52再構(gòu)成2個抽屜,這樣,即使20個數(shù)中取到了1和52,剩下的18個數(shù)還必須至少有兩個數(shù)取自前面16個抽屜中的兩個抽屜,從而有不同的兩組數(shù),其和等于104;如果取不到1和52,或1和52不全取到,那么和等于104的數(shù)組將多于兩組。我們將這7種訂法看成是7個“抽屜”,把100名學(xué)生看作100件物品。另外,還有2個不能配對的數(shù)是{6}{7}。,每位乘客都只帶有一種水果。3.11名學(xué)生到老師家借書,老師是書房中有A、B、C、D四類書,每名學(xué)生最多可借兩本不同類的書,最少借一本。為什么?解答:反證法說明。12=4……1把紅、黃、藍(lán)、白四種顏色的球各10個放到一個袋子里。借助算式思考。六、抽屜原理的教材解讀(一)例1和做一做例把4枝鉛筆放在3個文具盒里,不管怎么放,總有一個文具盒里至少放進(jìn)2枝鉛筆。n= m……b,其中b是自然數(shù),那么由抽屜原理2就可得到,至少有一個抽屜中的物品數(shù)不少于(m+1)件。一、抽屜原理簡介抽屜原理又稱鴿巢原理,它是組合數(shù)學(xué)的一個基本原理,最先是由德國數(shù)學(xué)家狹利克雷明確地提出來的,因此,也稱為狹利克雷原理。”因?yàn)槿我徽麛?shù)除以3時余數(shù)只有0、2三種可能,所以7個整數(shù)中至少有3個數(shù)除以3所得余數(shù)相同,即它們兩兩之差是3的倍數(shù)。所以,假設(shè)不成立,故必有一個i,在第i個集合中元素個數(shù)ai≥qi形式五:證明:(用反證法)將無窮多個元素分為有限個集合,假設(shè)這有限個集合中的元素的個數(shù)都是有限個,則有限個有限數(shù)相加,所得的數(shù)必是有限數(shù),這就與題設(shè)產(chǎn)生矛盾,所以,假設(shè)不成立,故必有一個集合含有無窮多個元素。從這10個數(shù)組的20個數(shù)中任取11個數(shù),根據(jù)抽屜原理,所以這兩個數(shù)中,其中一個數(shù)一定是另一個數(shù)的倍數(shù)。證明:至少有三個科學(xué)家通信時討論的是同一個問題?!薄皬臄?shù)1,2,...,10中任取6個數(shù),其中至少有2個數(shù)為奇偶性不同。10=8……1(個)。例2一個布袋中有40塊相同的木塊,其中編上號碼1,2,3,4的各有10塊。這個例子所體現(xiàn)的數(shù)學(xué)思想,就是下面的抽屜原理2。樂樂課堂樂樂課堂樂樂課堂樂樂課堂可見,如何構(gòu)造抽屜是利用抽屜原理解決問題的關(guān)鍵。不參加學(xué)習(xí)班有1種情況,只參加一個學(xué)習(xí)班有3種情況,參加兩個學(xué)習(xí)班有語文和數(shù)學(xué)、語文和美術(shù)、數(shù)學(xué)和美術(shù)3種情況。16.六年級有100名學(xué)生,他們都訂閱甲、乙、丙三種雜志中的一種、二種或三種。5倍。根據(jù)抽屜原理,從中選出26個數(shù),則必定有兩個數(shù)來自同一個抽屜,那么這兩個數(shù)的和即為100。這樣,如果任意再取1張的話,它的點(diǎn)數(shù)必為1~13中的一個,于是有2張點(diǎn)數(shù)相同。一些蘋果和梨混放在一個筐里,小明把這筐水果分成了若干堆,后來發(fā)現(xiàn)無論怎么分,總能從這若干堆里找到兩堆,把這兩堆水果合并在一起后,蘋果和梨的個數(shù)是偶數(shù),那么小明至少把這些水果分成了_______堆。某旅游車上有47名乘客,每位乘客都只帶有一種水果。23. 在一條長100米的小路一旁植樹101棵,不管怎樣種,總有兩棵樹的距離不超過1米。解:因?yàn)槿我夥殖伤慕M,必有一組的女生多于2人,所以女生至少有42+1=9(人);因?yàn)槿我?0人中必有男生,所以女生人數(shù)至多有9人。從前25個自然數(shù)中任意取出7個數(shù),證明:取出的數(shù)中一定有兩個數(shù),這兩個數(shù)中大數(shù)不超過小數(shù)的1。問:一次至少要取出多少木塊,才能保證其中至少有3塊號碼相同的木塊?分析與解:將1,2,3,4四種號碼看成4個抽屜。根據(jù)抽屜原理2,至少有8+1=9(個)小朋友拿的水果相同。反思:將邊長為1的正方形分成4個面積均為1/4 的小正方形,從而構(gòu)造出4個抽屜,是解決本題的關(guān)鍵。練習(xí)難度:簡單 類型:選擇題 答案:D 6.把13個蘋果放進(jìn)4個抽屜,一定有一個抽屜里至少有__________個蘋果. 來源:2015練習(xí)難度:簡單 類型:填空題 答案:18 14.袋子里有紅色的球3個,黃色的球5個,藍(lán)色的球6個,綠色的球8個,那么一次至少拿_______個球,才能保證一定有藍(lán)色的球. 來源:2015練習(xí)難度:中等 類型:填空題 答案:17 22.一個袋子里有1只紅襪子、3只黑襪子、5只白襪子和8只綠襪子.那么一次至少摸出_______只襪子,才能保證一定有顏色一樣的3只襪子. 來源:2015練習(xí)難度:簡單 類型:填空題 答案:25 30.盒子里有白色、紅色、黃色、綠色的粉筆各20根,一次性至少取出_______根粉筆,才能保證取出的粉筆中一定會有白色和紅色的粉筆. 來源:2015道理很簡單。今有玩具122件,122=340+2。所以不同的水果搭配共有4+6=10(種)。(41)=43……1。[證明](反證法):若每個抽屜都有不少于m個物體,則總共至少有mn個物體,與題設(shè)矛盾,故不可能二.應(yīng)用抽屜原理解題抽屜原理的內(nèi)容簡明樸素,易于接受,它在數(shù)學(xué)問題中有重要的作用。因而無論怎樣著色,在這六點(diǎn)之間的所有線段中至少能找到一個同色三角形。另外還有4個不能配對的數(shù){9},{10},{11},{12},共制成12個抽屜(每個括號看成一個抽屜).只要有兩個數(shù)取自同一個抽屜,那么它們的差就等于12,根據(jù)抽屜原理至少任選13個數(shù),即可辦到(取12個數(shù):從12個抽屜中各取一個數(shù)(例如取1,2,3,…,12),那么這12個數(shù)中任意兩個數(shù)的差必不等于12)。(用反證法)假設(shè)結(jié)論不成立,即對每一個ai都有ai<[n/k],于是有:a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=nk個[n/k] ∴ a1+a2+…+ak<n 這與題設(shè)相矛盾。這相當(dāng)于把6個東西放入5個抽屜,至少有2個東西在同一抽屜里。從六人集會問題的證明中,我們又一次看到了抽屜原理的應(yīng)用。(2)“任意放”的意思是不限制把物品放進(jìn)抽屜里的方法,不規(guī)定每個抽屜中都要放物品,即有些抽屜可以是空的,也不限制每個抽屜放物品的個數(shù)。使學(xué)生經(jīng)歷將具體問題“數(shù)學(xué)化”的過程,培養(yǎng)學(xué)生的“模型”思想。(二)例2和做一做例把5本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜至少放進(jìn)3本書。六(2)班中至少有5人是一個月出生的。能說明其中的道理嗎?解答:物體數(shù):3個(奇、奇),(奇、偶),(偶、偶),其和為2偶1奇。抽屜原理練習(xí)題1.木箱里裝有紅色球3個、黃色球5個、藍(lán)色球7個,若蒙眼去摸,為保證取出的球中有兩個球的顏色相同,則最少要取出多少個球?解:把3種顏色看作3個抽屜,若要符合題意,則小球的數(shù)目必須大于3,故至少取出4個小球才能符合要求。所以女生有9人,男生有55-9=46(人)證明:從1,3,5,……,99中任選26個數(shù),其中必有兩個數(shù)的和是100。⑤17,18,19,20,21,22,23, ⑥因?yàn)閺那?5個自然數(shù)中任意取出7個數(shù),所以至少有兩個數(shù)取自上面第②組到第⑥組中的某同一組,.一副撲克牌有四種花色,每種花色各有13張,現(xiàn)在從中任意抽牌。問:至少有多少名學(xué)生訂閱的雜志種類相同?分析與解:首先應(yīng)當(dāng)弄清訂閱雜志的種類共有多少種不同的情況。共有1+3+3=7(種)情況。23. 班上有50名學(xué)生,將書分給大家,至少要拿多少本,才能保證至少有一個學(xué)生能得到兩本或兩本以上的書。把這l9種不同座位數(shù)的汽車看作l9個抽屜,40輛汽車看作40個蘋果,每只抽屜中放2個蘋果,l9個抽屜中共放38個蘋果,還有40一38=2(個)蘋果放入相應(yīng)的抽屜中,至少有一個抽屜中有3個蘋果,也就是說,至少有3輛客車的座位是相同的。這樣每次都能保證拿出兩個同顏色的球,所以至少要拿出3個球。把這些書分給同學(xué),是否有人會得到4件或4件以上的玩具?本文來源于楓葉教育網(wǎng)()原文鏈接:第五篇:小學(xué)奧數(shù)三年級 抽屜原理2012小學(xué)奧數(shù)三年級參考資料抽屜原理【知識與方法】把4個蘋果放到3個抽屜中去,那么,至少有一個抽屜中放有兩個蘋果。分析:解這個問題,注意到一個數(shù)被3除的余數(shù)只有0,1,2三個,可以用余數(shù)來構(gòu)造抽屜。18.籃子里有蘋果、梨、桃和桔子,現(xiàn)有81個小朋友,如果每個小朋友都從中任意拿兩個水果,那么至少有多少個小朋友拿的水果是相同的?分析與解:首先應(yīng)弄清不同的水果搭配有多少種。這7個抽屜可以表示為{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},顯然從7個抽屜中取8個數(shù),則一定可以使有兩個數(shù)字來源于同一個抽屜,也即作差為7,所以選擇D。,小明把這筐水果分成了若干堆,后來發(fā)現(xiàn)無論怎么分,總能從這若干堆里找到兩堆,把這兩堆水果合并在一起后,蘋果和梨的個數(shù)是偶數(shù),那么小明至少把這些水果分成了_______堆。共有10種類型,把這10種類型看作10個“抽屜”,把11個學(xué)生看作11個“蘋果”。能找到3個數(shù),讓這3個數(shù)的和是3的倍數(shù)。結(jié)果是摸出的球數(shù)比顏色數(shù)多1,即5個球。做一做:8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進(jìn)同一個鴿舍里。所以至少有2枝鉛筆放進(jìn)同一個文具盒。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明通過什么方式把這個存在的物體(或人)找出來。原理3:無窮多個元素分成n個集合,則至少有一個集合中含有無窮多個元素。許多有關(guān)存在性的證明都可用它來解決。.某兩類各含兩個數(shù),就在至少包含三個數(shù)的那一類中任取三數(shù),其和一定能被3整除;若是第二種情況,在三類中各取一個數(shù),其和也能被3整除..綜上所述,:某校派出學(xué)生204人上山植樹15301株,其中最少一人植樹50株,最多一人植樹100株,:按植樹的多少,從50到100株可以構(gòu)造51個抽屜,則個問題就轉(zhuǎn)化為至少有5人植樹的株數(shù)在同一個抽屜里.(用反證法)假設(shè)無5人或5人以上植樹的株數(shù)在同一個抽屜里,那只有5人以下植樹的株數(shù)在同一個抽屜里,而參加植樹的人數(shù)為204人,所以,每個抽屜最多有4人,故植樹的總株數(shù)最多有:4(50+51+…+100)=4 =15300<,:1.邊長為1的等邊三角形內(nèi)有5個點(diǎn),.邊長為1的等邊三角形內(nèi),若有n2+1個點(diǎn),.求證:任意四個整數(shù)中,.某校高一某班有50名新生,.某個年級有202人參加考試,滿分為100分,且得分都為整數(shù),總得分為10101分,則至少有3人得分相同.“任意367個人中,必有生日相同的人。在有些問題中,“抽屜”和“物體”不是很明顯的,需要精心制造“抽屜”和“物體”.如何制造“抽屜”和“物體”可能是很困難的,一方面需要認(rèn)真地分析題目中的條件和問題,另一方面需要多做一些題積累經(jīng)驗(yàn)。若這6位中有兩位之間也討論甲問題,則結(jié)論成立。下面我們來研究有關(guān)的一些問題。提示:11場球有22隊(duì)次參賽。問:至少有多少名學(xué)生,才能保證有不少于5名同學(xué)參加學(xué)習(xí)班的情況完全相同?分析與解:首先要弄清參加學(xué)習(xí)班有多少種不同情況。所以一次至少要取出9塊木塊,才能保證其中有3塊號碼相同的木塊。假定這n個抽屜中,每一個抽屜內(nèi)的物品都不到(m+1)件,即每個抽屜里的物品都不多于m件,這樣,n個抽屜中可放物品的總數(shù)就不會超過mn件。練習(xí)難度:簡單 類型:填空題 答案:34 33.籠子里有一些包子,其中雞肉餡的5個,魚肉餡的8個,牛肉餡的10個,白菜餡的15個,那么至少吃_______個包子,才能保證一定能吃到魚肉餡和牛肉餡的. 來源:2015練習(xí)難度:中等 類型:填空題 答案:20 25.袋子里有紅色的球6個,黑色的球7個,黃色的球10個,綠色的球8個,那么一次至少拿_______個球,才能保證取出的球至少有兩種顏色. 來源:2015練習(xí)難度:中等 類型:填空題 答案:4 17.盤子里有一些餃子,韭菜味的5個,牛肉味的8個,辣椒味的6個.那么至少吃________個餃子,才能保證一定能吃到3個口味一樣的餃子. 來源:2015練習(xí)難度:簡單 類型:選擇題 答案:A 9.把27個蘋果放進(jìn)4個抽屜,一定有一個抽屜里至少有__________個蘋果. 來源:2015解:把這條小路分成每段1米長,共100段,每段看作是一個抽屜,共100個抽屜,把101棵樹看作是101個蘋果,于是101個蘋果放入100個抽屜中,至少有一個抽屜中有兩個蘋果,即至少有一段有兩棵或兩棵以上的樹.第二篇:小學(xué)奧數(shù)簡單抽屜原理1.把10個蘋果發(fā)給3個同學(xué),下面說法正確的是__________.... 來源:2015,4,7,10,…,100中任選20個數(shù),其中至少有不同的兩對數(shù),其和等于104。總共有3+3+1=7(種)訂閱方法。13.從4……、12這12個自然數(shù)中,至少任選幾個,就可以保證其中一定包括兩個數(shù),他們的差是7?【解析】在這12個自然數(shù)中,差是7的自然樹有以下5對:{12,5}{11,4}{10,3}{9,2}{8,1}。如果乘客中有人帶梨,并且其中任何兩位乘客中至少有一個人帶蘋果,那么乘客中有______人帶蘋果。證明:若學(xué)生只借一本書,則不同的類型有A、B、C、D四種,若學(xué)生借兩本不同類型的書,則不同的類型有AB、AC、AD、BC、BD、CD六種。11。5.體育用品倉庫里有許多足球、排球和籃球,某班50名同學(xué)來倉庫拿球,規(guī)定每個人至少拿1個球,至多拿2個球,問至少
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1