【正文】
這個(gè)角度有助于減少壓力脈動。這個(gè)力的振動振幅隨著斜盤角增加而上升。流量脈動振幅隨著斜盤傾角的增加而越來越大。中間軸的模型用相同的方式來做。而當(dāng)活塞向左移動,柱塞推動液體驅(qū)動負(fù)載。滑靴球鉸中心的運(yùn)動可以由B點(diǎn)的軌跡來描述。所有這些研究證明該技術(shù)的有效性,但這些模型仍然是簡單的,需要進(jìn)一步改善。和簡化帶來相當(dāng)大的偏差。. Fig. 12. Fluid force on the pistons Fig. 13. Pressure with the angle of swashplate changing Stress and deformation of the pistons and middle shaftWith the FEM technology, the middle shaft and pistons model are improved from rigid body to flexible body, which is more tally with the actual situation. In dynamic environment, the stress and strain of the flexible body can be simulated when the virtual prototype is running. And the intensity of the flexible body parts can be investigated.The stress and strain can describe the intensity and deformation to a degree. Fig. 14 shows the stress and strain when the simulation time is at s. The maximum stress at this state is about 196 MPa and the maximum strain is about mm. The most serious deformation region appears nearby the spline.(a) Stress of the middle shaft at s (MPa)(b) Strain of the middle shaft at s (10–4)Fig. 14. Stress and strain of the middle shaftFig. 15 gives the simulation result of the piston. The maximum stress in the piston is about 222 MPa and the maximum strain is about mm. So the result is in a proper range. Besides, the stress also can be used for analyzing the friction on the outside of the piston.(a) Stress of the pistons (MPa) (b) Strain of the pistons (10–8)Fig. 15. Stress and strain of the piston4 Conclusions(1) On the basis of different models and the interfaces, it is feasible to make the virtual prototype of piston pump. According to the type of the model (such as the dynamic model and hydraulic model), corresponding simulation results are shown to predict the performance of the piston pump, so more characteristics can be studied by VPT.(2) When the valve plate is mounted on the end cap, a difference angle (index angle) is set. This angle helps to reduce the pressure ripple. And the effect of the virtual prototype is also proved based on the simulation results.(3) The piston pump is one of the most plex hydraulic ponents, so the modeling and simulation also need several hypotheses to simply modeling.(4) Compared with the traditional simulation on piston pump, the VPT concentrated on more factors, such as the shape of the parts, the flexible body of parts, etc. So simulation model more tally with the actual situation and the result is more effective and useful to optimize the structure.(5) Because of the connection of so many models, it is difficult and plicated to make the effective interface. But with the development of the modeling and putation, the VPT has the potential to help to develop the new generation piston pump prototype with higher performance.References[1] ZHANG B F. Dynamic simulation of transmission system of mobile power station based on virtual prototype technology[D]. Luoyang: Henan University of Science and Technology, 2004. (in Chinese)[2] ZHENG J R. ADAMS——Introduction and application of virtual prototype technology[M]. Beijing: People’s Medical Publishing House, 2002. (in Chinese)[3] YANG Z W, XU B, ZHANG B. Simulation of axial piston pump based on virtual prototype[J]. Hydraulics Pneumatics amp。, 176。關(guān)鍵詞:虛擬樣機(jī),軸向柱塞泵,動力1.介紹? 軸向柱塞液壓油泵是一種重要的液壓組件,它被廣泛應(yīng)用在工業(yè)和兩個(gè)移動機(jī)器。柱塞泵虛擬樣機(jī)的概念是在2004年提出, 關(guān)鍵零件的輸出壓力和流量脈動,應(yīng)變和應(yīng)力已經(jīng)被分析。柱塞的中線和斜盤表面的交點(diǎn)即B′的坐標(biāo)是:. (1)由(1)式可得:結(jié)果表明柱塞沿著z軸移動并且繞中間軸旋轉(zhuǎn)。(4)油液的粘度是不變的。用有限元法并將剛性部件轉(zhuǎn)換為柔性部件的方法來分析模型是必要的。圖10顯示了輸出流量隨著斜盤傾角的變化。,176。4.結(jié)論(1)根據(jù)不同的模型和接口,使用柱塞泵虛擬樣機(jī)是可行的。(4)與柱塞泵傳統(tǒng)模擬相比較,VPT集中在更多的因素,例如零件的形狀,零件的柔性,等等。時(shí)力的數(shù)值迅速上升。配流盤的兩個(gè)腰形孔之間有不同角度(指引角)。對應(yīng)部分的強(qiáng)度以這樣的方式進(jìn)行了分析。 (8) (9) (10) ——柱塞直徑; ——柱塞與缸體之間的縫隙高度; ——柱塞與缸體之間的接觸長度; ——流體的動力粘度; ——柱塞的離心率; ——柱塞腔中的壓力; ——泵內(nèi)部的壓力; λ——壓力比; ——滑靴和斜盤之間的間隙; ——滑靴的結(jié)構(gòu)參數(shù); ——配流盤和缸體之間的間隙; ——配流盤的結(jié)構(gòu)參數(shù)。為了簡化分析,只有必要零件的模型被建立。2.柱塞泵的建模模型的合理性是依靠仿真結(jié)果的有效性,所以住塞泵的建模是至關(guān)重要的。隨著VPT復(fù)雜機(jī)制系統(tǒng)模型的使用及其動力學(xué)特性能以一個(gè)非常現(xiàn)實(shí)的條件通過集成建模工具從幾個(gè)不同的領(lǐng)域和模擬方法被模擬。lhydraulik und Pneumatik (O+P), 2003, 47: 11?12.[7] PETER A, MARTIN P. Simulation of a hydraulic variable axial piston double pump of bent axis design with subsystems[C]//The 1st European User Conference, London, November 13?14, 2002: 10?17.[8] ZHANG H, KASPER L, RICH K. Development of a virtual prototype of piston pump for hydrostatic transmission[C]//Proceedings of the 6th International Conference on Fluid Power Transmission and Control, Hangzhou, China, April 5?8, 2005: 485?489.[9] YANG Z W. Research of virtual prototype simulation technology for axial piston pump[D]. Hangzhou: Zhejiang University, 2006. (in