【摘要】均值不等式總結(jié)及應用1.(1)若,則 (2)若,則 (當且僅當時取“=”)2.(1)若,則 (2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則
2025-06-17 15:53
【摘要】北京市藍靛廠中學張迎戰(zhàn)一、學習內(nèi)容:第六章不等式.本章內(nèi)容分為五部分:1、不等式的性質(zhì)2、算術(shù)平均數(shù)和幾何平均數(shù)3、不等式的證明4、不等式的解法5、含絕對值的不等式二、學習要求1、理解不等式的性質(zhì)及其證明2、掌握兩個正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應用
2025-07-21 18:45
【摘要】第一篇:不等式3(基本不等式應用與證明) 學習要求大成培訓教案(不等式3基本不等式證明與應用)基本不等式 ,,并掌握基本不等式中取等號的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【摘要】不等式的性質(zhì)二定理1:(對稱性)ab?bb,bcac.定理3:(可加性)ab?a+cb+c.定理4:若ab,c0,則acbc.若ab,c0,則acbc(可乘性)一.溫故
2025-10-28 15:49
【摘要】不等式的性質(zhì)(1)張統(tǒng)林?質(zhì)是什么?請用”””3,5+23+2,5-23-2(2)-12,6×52×5,6×
2025-08-04 13:03
【摘要】什么叫方程?什么是方程的解?什么叫不等式?常用的不等號有哪些?(1)x的3倍大于1;(2)y與5的差小于零;(3)x與3的和不大于6;(4)x的不小于2.(5)一個兩位數(shù)的十位數(shù)字是x,個位數(shù)字比十位數(shù)字小4,這個兩位數(shù)不小于55。當x的值分別
2025-07-26 12:19