freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx年北京市高考數(shù)學(xué)試卷(理科)(專業(yè)版)

2025-05-28 12:19上一頁面

下一頁面
  

【正文】 c=a.(1)求sinC的值;(2)若a=7,求△ABC的面積.【分析】(1)根據(jù)正弦定理即可求出答案,(2)根據(jù)同角的三角函數(shù)的關(guān)系求出cosC,再根據(jù)兩角和正弦公式求出sinB,根據(jù)面積公式計(jì)算即可.【解答】解:(1)∠A=60176。c=a,由正弦定理可得sinC=sinA==,(2)a=7,則c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=+=,∴S△ABC=acsinB=73=6.【點(diǎn)評】本題考查了正弦定理和兩角和正弦公式和三角形的面積公式,屬于基礎(chǔ)題 16.(14分)如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求證:M為PB的中點(diǎn);(2)求二面角B﹣PD﹣A的大??;(3)求直線MC與平面BDP所成角的正弦值.【分析】(1)設(shè)AC∩BD=O,則O為BD的中點(diǎn),連接OM,利用線面平行的性質(zhì)證明OM∥PD,再由平行線截線段成比例可得M為PB的中點(diǎn);(2)取AD中點(diǎn)G,可得PG⊥AD,再由面面垂直的性質(zhì)可得PG⊥平面ABCD,則PG⊥AD,連接OG,則PG⊥OG,再證明OG⊥AD.以G為坐標(biāo)原點(diǎn),分別以GD、GO、GP所在直線為x、y、z軸距離空間直角坐標(biāo)系,求出平面PBD與平面PAD的一個法向量,由兩法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3)求出的坐標(biāo),由與平面PBD的法向量所成角的余弦值的絕對值可得直線MC與平面BDP所成角的正弦值.【解答】(1)證明:如圖,設(shè)AC∩BD=O,∵ABCD為正方形,∴O為BD的中點(diǎn),連接OM,∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,則,即M為PB的中點(diǎn);(2)解:取AD中點(diǎn)G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,則PG⊥AD,連接OG,則PG⊥OG,由G是AD的中點(diǎn),O是AC的中點(diǎn),可得OG∥DC,則OG⊥AD.以G為坐標(biāo)原點(diǎn),分別以GD、GO、GP所在直線為x、y、z軸距離空間直角坐標(biāo)系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),.設(shè)平面PBD的一個法向量為,則由,得,取z=,得.取平面PAD的一個法向量為.∴cos<>==.∴二面角B﹣PD﹣A的大小為60176。c=a.(1)求sinC的值;(2)若a=7,求△ABC的面積.16.(14分)如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點(diǎn)M在線段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求證:M為PB的中點(diǎn);(2)求二面角B﹣PD﹣A的大小;(3)求直線MC與平面BDP所成角的正弦值.17.(13分)為了研究一種新藥的療效,選100名患者隨機(jī)分成兩組,每組各50名,一組服藥,另一組不服藥.一段時間后,記錄了兩組患者的生理指標(biāo)x和y的數(shù)據(jù),并制成如圖,其中“*”表示服藥者,“+”表示未服藥者.(1)從服藥的50名患者中隨機(jī)選出一人,求此人指標(biāo)y的值小于60的概率;(2)從圖中A,B,C,D四人中隨機(jī)選出兩人,求ξ的分布列和數(shù)學(xué)期望E(ξ);(3)試判斷這100名患者中服藥者指標(biāo)y數(shù)據(jù)的方差與未服藥者指標(biāo)y數(shù)據(jù)的方差的大小.(只需寫出結(jié)論)18.(14分)已知拋物線C:y2=2px過點(diǎn)P(1,1).過點(diǎn)(0,)作直線l與拋物線C交于不同的兩點(diǎn)M,N,過點(diǎn)M作x軸的垂線分別與直線OP、ON交于點(diǎn)A,B,其中O為原點(diǎn).(1)求拋物線C的方程,并求其焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;(2)求證:A為線段BM的中點(diǎn).19.(13分)已知函數(shù)f(x)=excosx﹣x.(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;(2)求函數(shù)f(x)在區(qū)間[0,]上的最大值和最小值.20.(13分)設(shè){an}和{bn}是兩個等差數(shù)列,記=max{b1﹣a1n,b2﹣a2n,…,bn﹣ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個數(shù)中最大的數(shù).(1)若an=n,bn=2n﹣1,求c1,c2,c3的值,并證明{}是等差數(shù)列;(2)證明:或者對任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時,>M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.  2017年北京市高考數(shù)學(xué)試卷(理科)參考答案與試題解析 一、選擇題.(每小題5分)1.(5分)若集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},則A∩B=( ?。〢.{x|﹣2<x<﹣1} B.{x|﹣2<x<3} C.{x|﹣1<x<1} D.{x|1<x<3}【分析】根據(jù)已知中集合A和B,結(jié)合集合交集的定義,可得答案.【解答】解:∵集合A={x|﹣2<x<1},B={x|x<﹣1或x>3},∴A∩B={x|﹣2<x<﹣1}故選:A【點(diǎn)評】本題考查的知識點(diǎn)集合的交集運(yùn)算,難度不大,屬于基礎(chǔ)題. 2.(5分)若復(fù)數(shù)(1﹣i)(a+i)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)a的取值范圍是(  )A.(﹣∞,1) B.(﹣∞,﹣1) C.(1,+∞) D.(﹣1,+∞)【分析】復(fù)數(shù)(1﹣i)(a+i)
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1