【摘要】第一課時(shí)正弦定理(1)一.學(xué)習(xí)目標(biāo):1.了解正弦定理推導(dǎo)過程;2.掌握正弦定理內(nèi)容;3.會(huì)利用正弦定理求解簡單斜三角形邊角問題。二.學(xué)習(xí)重難點(diǎn):重點(diǎn):正弦定理證明及應(yīng)用;難點(diǎn):正弦定理的證明,正弦定理在解三角形時(shí)應(yīng)用思路.三.自主預(yù)習(xí):1.一般地,把三角形的三個(gè)內(nèi)角A,B,C和它們的對(duì)邊叫做三角形的________,已知三角形的幾個(gè)元素求
2025-06-08 00:37
【摘要】正弦定理、余弦定理的應(yīng)用(一)課時(shí)目標(biāo);、余弦定理解決生產(chǎn)實(shí)踐中的有關(guān)距離的問題.1.方位角:指從正北方向線按________方向旋轉(zhuǎn)到目標(biāo)方向線所成的水平角.如圖中的A點(diǎn)的方位角為α.2.計(jì)算不可直接測量的兩點(diǎn)間的距離是正弦定理和余弦定理的重要應(yīng)用之一.一、填空題1.如圖,A、B兩點(diǎn)間的距
2024-12-05 10:14
【摘要】余弦定理(1)●作業(yè)導(dǎo)航掌握余弦定理,理解余弦定理與勾股定理的關(guān)系,知道利用余弦定理的變形式求邊與角,會(huì)解已知兩邊和它們的夾角或三邊的三角形問題.一、選擇題(本大題共5小題,每小題3分,共15分)1.在△ABC中,已知b=43,c=23,∠A=120°,則a等于()
2024-12-05 03:04
【摘要】第3課時(shí)正弦定理、余弦定理的綜合應(yīng)用、余弦定理的內(nèi)容.,選擇恰當(dāng)?shù)墓浇馊切?,進(jìn)一步理解正弦定理、余弦定理的作用.2021年,敘利亞內(nèi)戰(zhàn)期間,為了準(zhǔn)確分析戰(zhàn)場形式,美軍派出偵查分隊(duì)由分別位于敘利亞的兩處地點(diǎn)C和D進(jìn)行觀測,測得敘利亞的兩支精銳部隊(duì)分別位于A和B處,美軍測得的數(shù)據(jù)包
2024-12-08 02:37
【摘要】課題:余弦定理(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】運(yùn)用余弦定理解決一些與測量和幾何計(jì)算有關(guān)的實(shí)際問題【課前預(yù)習(xí)】1.在ABC?中,5?AB,7?AC,8?BC,則??BCAB____________________.2.已知Cabsin?
2024-11-20 01:05
【摘要】弧度制【學(xué)習(xí)要求】1.理解角度制與弧度制的概念,能對(duì)弧度和角度進(jìn)行正確的轉(zhuǎn)換.2.體會(huì)引入弧度制的必要性,建立角的集合與實(shí)數(shù)集一一對(duì)應(yīng)關(guān)系.3.掌握并能應(yīng)用弧度制下的弧長公式和扇形面積公式.【學(xué)法指導(dǎo)】1.通過類比長度、重量的不同度量制,體會(huì)一個(gè)量可以用不同的單位制來度量,從而引出弧度
2024-12-05 01:56
【摘要】正弦定理A組基礎(chǔ)鞏固1.在△ABC中,已知b=40,c=20,C=60°,則此三角形的解的情況是()A.有一解B.有兩解C.無解D.有解但解的個(gè)數(shù)不確定解析:由正弦定理bsinB=csinC,得sinB=bsinCc=40×3220=31.∴
2024-12-08 20:25
【摘要】弧度制重點(diǎn):用弧度制表示各種角以及弧度制與角度制之間的換算.難點(diǎn):對(duì)弧度制的引入.一、角度制與弧度制的轉(zhuǎn)化同一個(gè)角,除零角之外,用“度”表示與用“弧度”表示是不同的數(shù)量.“度”不可省略,“弧度”即“rad”可省略.其換算關(guān)系以π=180°為轉(zhuǎn)化點(diǎn).例1(1)把112°30′
2024-12-05 06:49
【摘要】人教版高中數(shù)學(xué)必修5正弦定理和余弦定理測試題及答案一、選擇題1.在△ABC中,三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若a=2,b=3,cosC=-,則c等于()(A)2 (B)3 (C)4 (D)52.在△ABC中,若BC=,AC=2,B=45°,則角A等于()(A)60° (B)30° (C)60°或120
2025-06-23 04:10