【摘要】《生活中的優(yōu)化問題舉例》教學目標?掌握導數(shù)在生活中的優(yōu)化問題問題中的應用?教學重點:?掌握導數(shù)生活中的優(yōu)化問題問題中的應用.規(guī)格(L)2價格(元)問題背景:飲料瓶大小對飲料公司利潤的影響下面是某品牌飲料的三種規(guī)格不同的產(chǎn)品,若它們的價格如下表所示,則(
2025-11-09 12:13
【摘要】??.,.,,.,問題解決一些生活中的優(yōu)化數(shù)本節(jié)我們運用導值的有力工具小導數(shù)是求函數(shù)最大我們知道習前面的學過通通常稱為這些問題最省、效率最高等問題最大、用料生活中經(jīng)常遇到求利潤優(yōu)化問題高汽油的使用效率何時最例1?????????""2?,1:,.vw,h/km:vL:w,
【摘要】江蘇省漣水縣第一中學高中數(shù)學第三章第10課導數(shù)在實際生活中的應用(1)教學案蘇教版選修1-1班級:高二()班姓名:____________教學目標:通過生活中優(yōu)化問題的學習,體會導數(shù)在解決實際問題中的作用,促進學生全面認識數(shù)學的科學價值、應用價值和文化價值;通過實際問題的研究,促進學生分析問題、解決問題以及數(shù)
2025-11-14 01:03
【摘要】§導數(shù)在研究函數(shù)中的應用1.單調(diào)性課時目標掌握導數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.1.導函數(shù)的符號與函數(shù)的單調(diào)性的關(guān)系:如果在某個區(qū)間內(nèi),函數(shù)y=f(x)的導數(shù)________,則函數(shù)y=f(x)這個區(qū)間上是增函數(shù);如果在某個區(qū)
2025-11-26 09:29
【摘要】第5課時導數(shù)的綜合應用、極值、最值等..函數(shù)與導數(shù)是高中數(shù)學的核心內(nèi)容,函數(shù)思想貫穿中學數(shù)學全過程.導數(shù)作為工具,提供了研究函數(shù)性質(zhì)的一般性方法.作為“平臺”,可以把函數(shù)、方程、不等式、圓錐曲線等有機地聯(lián)系在一起,在能力立意的命題思想指導下,與導數(shù)相關(guān)的問題已成為高考數(shù)學命題的必考考點之一.函數(shù)與方
2025-11-26 06:30
【摘要】1.微積分基本定理一、基礎過關(guān)1.若F′(x)=x2,則F(x)的解析式正確的是______.①F(x)=13x3②F(x)=x3③F(x)=13x3+1④F(x)=13x3+c(c為常數(shù))2.設f(x)=?????x+1?x≤1?,12x2?x1?,則?
2025-11-26 06:24
【摘要】1.函數(shù)的和、差、積、商的導數(shù)一、基礎過關(guān)1.下列結(jié)論不正確的是________.(填序號)①若y=3,則y′=0;②若f(x)=3x+1,則f′(1)=3;③若y=-x+x,則y′=-12x+1;④若y=sinx+cosx,則y′=cosx+si
2025-11-26 06:25
【摘要】第2章推理與證明§合情推理與演繹推理2.合情推理(一)一、基礎過關(guān)1.數(shù)列5,9,17,33,x,…中的x等于________2.f(n)=1+12+13+…+1n(n∈N*),計算得f(2)=32,f(4)2,f(8)52,f(16)3,f(32)
【摘要】1.最大值與最小值一、基礎過關(guān)1.函數(shù)f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分別是________,________.2.f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是________.3.函數(shù)y=lnxx的最大值為________.4.函數(shù)f(x)=xex的最