【摘要】2015-2016學(xué)年度依蘭縣高級中學(xué)4月測試卷 考試范圍:必修4、5;考試時(shí)間:120分鐘;命題人:依蘭縣高級中學(xué)劉朝亮1、等差數(shù)列的前項(xiàng)和為()A.54 B.45 C.36D.272、已知等比數(shù)列中,,則等于( ) 3、數(shù)列1,,,,……的一個(gè)通項(xiàng)公式是()A,=,B,=,C,=,
2025-04-04 04:28
【摘要】任意角的三角函數(shù)課本例題是我們學(xué)習(xí)的模版,我們可以通過模仿它完成其他同類練習(xí),還可以通過掌握它的思想促類旁通、舉一反三。如果在平時(shí)學(xué)習(xí)中我們能自己將例題改編成同類題并解決它們,我們的解題水平會有很大的提高。課本例6:若3sin5???,求cos?、?tan的值。題型分析:本題實(shí)際上是考查同角三角函數(shù)關(guān)系中平方關(guān)系以及商數(shù)關(guān)系的直接應(yīng)用。
2024-11-19 20:39
【摘要】任意角的三角函數(shù)【學(xué)習(xí)要求】1.通過借助單位圓理解并掌握任意角的三角函數(shù)定義,了解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù).2.借助任意角三角函數(shù)的定義理解并掌握正弦、余弦、正切函數(shù)在各象限內(nèi)的符號.3.通過對任意角的三角函數(shù)定義的理解,掌握終邊相同角的同一三角函數(shù)值相等.【學(xué)法指導(dǎo)】1.在初中所學(xué)習(xí)的銳角三角函數(shù)的基礎(chǔ)上過渡到任意角三角函數(shù)的概
2024-11-19 23:27
【摘要】課題任意角的三角函數(shù)教學(xué)目標(biāo)知識與技能任意角的三角函數(shù)的定義,會求角α的各三角函數(shù)值過程與方法正確理解三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù)情感態(tài)度價(jià)值觀學(xué)習(xí)轉(zhuǎn)化的思想,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神重點(diǎn)任意角的三角函數(shù)的定義;以及這三種函數(shù)的第一組誘導(dǎo)公式。難點(diǎn)用
【摘要】1.3三角函數(shù)的圖象和性質(zhì)1.三角函數(shù)的周期性情景:自然界中存在著許多周而復(fù)始的現(xiàn)象,如地球的自轉(zhuǎn)和公轉(zhuǎn),物理學(xué)中的單擺運(yùn)動和彈簧振動,圓周運(yùn)動等.從正弦函數(shù)、余弦函數(shù)的定義可知,角α的終邊每轉(zhuǎn)一周又會與原來的位置重合,故sinα,cosα的值也具有周而復(fù)始的變化規(guī)律.思考:正弦函數(shù)、余弦函數(shù)及正切函數(shù)它們都
2024-12-05 00:28
【摘要】課題:同角三角函數(shù)關(guān)系班級:姓名:【學(xué)習(xí)目標(biāo)】,并體會它們在三角函數(shù)式的化簡、求值和三角恒等式證明中的應(yīng)用。【課前預(yù)習(xí)】1、角?的終邊經(jīng)過點(diǎn)(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【摘要】課題:任意角的三角函數(shù)(2)一:學(xué)習(xí)目標(biāo)1.進(jìn)一步掌握任意角的正弦、余弦、正切的定義,會用角α的正弦線、余弦線、正切線分別表示任意角α的正弦、余弦、正切函數(shù)值;2.進(jìn)一步掌握正弦、余弦、正切的函數(shù)的定義域和這三種函數(shù)的值在各象限的符號。二:課前預(yù)習(xí)(1)已知角?的終邊經(jīng)過點(diǎn)(1,2)?,則cos?的值為_____
2024-11-20 01:06
【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對于任意一個(gè)0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
2024-12-09 03:46
【摘要】利用三角函數(shù)定義解題設(shè)角?的終邊上任意一點(diǎn)P的坐標(biāo)是),(yx,它與原點(diǎn)的距離是r(22yxr??),那么ry??sin,rx??cos,xy??tan,利用三角函數(shù)的定義,可巧妙地解決一類三角函數(shù)題。一、求值:例1:已知31tan??x,求????22coscossin2sin3