【正文】
KA= 計(jì)算功率 Pc=KAP= Pc= 選帶型號(hào) 查圖 Z型 第三章 整機(jī)的結(jié)構(gòu)設(shè)計(jì) 9 小帶輪直徑 查表 D1=68mm 大帶輪直徑 D2=( 1 ? ) D1i1=( ) 68 D2= ( 設(shè) ? =2%) 查表取標(biāo)準(zhǔn)值為 D2=200mm 大帶輪帶速 n2=( 1? )211DnD =( ) 202039068? n2=463r/min 驗(yàn)算帶速和傳動(dòng)比 驗(yàn)算帶速 v 帶 = 60000nD 11? = 60000139068??? v 帶 =帶速滿足要求 驗(yàn)算傳動(dòng)比 i1=)( ??1DD1 2=3 傳動(dòng)比誤差 △ i1= ? 100%=%﹤ 3% 傳動(dòng)比滿足要求 計(jì)算帶長(zhǎng) 和包角 求 amin, amax 一般規(guī)定 amin=( D1+D2) = ( 68+200) amin= amax =2( D1+D2) =2 ( 68+200) amax =536mm 初定中心距為 300mm 確定帶的基準(zhǔn)長(zhǎng)度 Ldo=2a0+2? ( D1+D2) +02124 DD a )( ? =2 300+2? ( 68+200) + 3004 68200 2?? )( Ld= 查表取標(biāo)準(zhǔn)值 Ldo=1000mm 第三章 整機(jī)的結(jié)構(gòu)設(shè)計(jì) 10 實(shí)際中心距 a≈ a0+2LL dod?=300+2 ? a= 小帶輪的包角 1? =1800 012 a DD ?? =1800 ?? 1? =﹥ 1200 求帶根數(shù) 帶速 由上述可得 v 帶 =傳動(dòng)比 由上述可得 i1=3 帶根數(shù) 查表 P0=, k? =, kL = △ P0= Z=L00c kkPP P?)( ??= ??? )( Z= 取帶根數(shù)為 2。 聯(lián)軸器的選擇 在減速器和非磁滾筒主軸之間需要一聯(lián)軸器, 考慮到減速器的輸出軸和非磁滾筒的主軸之間不經(jīng)常移動(dòng),其軸線又需要在同一中心線上,故可選用一剛性聯(lián)軸器進(jìn)行聯(lián)接。 由 設(shè)計(jì)手冊(cè) [1]查表選擇軸承 的 型號(hào): 滾動(dòng)軸承 6206 GB/T276— 94 第三章 整機(jī)的結(jié)構(gòu)設(shè)計(jì) 13 鐵環(huán)在主軸上的軸向固定用軸肩 —— 圓螺母,由 設(shè)計(jì)手冊(cè) [1]查表,選擇圓螺母的型號(hào)為: GB 812 M40 非磁滾筒主軸與端蓋聯(lián) 接處的軸徑為 mm42? ,與滾動(dòng)軸承配合處的軸徑為mm30? ,主軸與聯(lián)軸器聯(lián)接處的軸徑為 mm24? 。可以看出數(shù)據(jù)很小,所傳遞的功率也不足 , 若 選用標(biāo)準(zhǔn)減速器,同時(shí)又需要傳動(dòng)比為 i=16,所選標(biāo)準(zhǔn)減速 器的最小號(hào)所能傳遞的功率為 8kw, 已 大大超過(guò)需要,同時(shí)結(jié)構(gòu)尺寸也較大, 實(shí)在是大材小用了,有些浪費(fèi),故應(yīng)根據(jù)實(shí)際情況設(shè)計(jì) 二級(jí)標(biāo)準(zhǔn)直齒圓柱齒輪減速器 ,而不宜采用標(biāo)準(zhǔn)減速器,以力求節(jié)約成本,同時(shí)使其得到合理利用。 第三章 整機(jī)的結(jié)構(gòu)設(shè)計(jì) 20 圖 2 上圖 是一實(shí)際案例, 參看各實(shí)際案例,料斗一般做成框架式的, 用角鋼焊接而成,以力求結(jié)構(gòu)簡(jiǎn)單,便于生產(chǎn),減輕成本,其具體實(shí)際尺寸結(jié)構(gòu)請(qǐng)參看圖紙第 1 張。在箱體兩側(cè)則各焊接一段角鋼以起支撐作用。 箱蓋和箱體之間不應(yīng)做成一體的,而做成可分離式的,用螺栓聯(lián)接而成,便于拆卸以對(duì)其內(nèi)部進(jìn)行檢查維修。 干式磁選機(jī) 的特點(diǎn)是 結(jié)構(gòu)簡(jiǎn)單、處理量大、操作方便 、易于維護(hù)等。A/m) 的 2 倍,銀鐵氧體 (, )最大磁能積( 由上面非磁滾筒的設(shè)計(jì)計(jì)算可將磁滾筒兩端與滾動(dòng)軸承配合地方 的軸徑取為相同,即采用相同的滾動(dòng)軸承,以降低成本。 計(jì)算項(xiàng)目 計(jì)算內(nèi)容 計(jì)算結(jié)果 第四章 磁滾筒的設(shè)計(jì) 28 壽命計(jì)算 沖擊載荷系數(shù) 查表,考慮平穩(wěn)運(yùn)轉(zhuǎn)或輕微沖擊 fd= 當(dāng)量動(dòng)載荷 P1=fd X1 Fr1= 1 1350 P1=1485N P2=fd X2 Fr2= 1 1350 P2=1485N 軸承壽命 L10h=n16670 ?????????1rPC = 3148515000?????? L10h=6 105 靜載荷計(jì)算 X0, Y0 查表 X0=, Y0= 當(dāng)量靜載荷 P0r1=X0 Fr1+Y0 Fa1= 1350 P0r1=810N P0r2=X0 Fr2+Y0 Fa2= 1350 P0r2=810N 安全系數(shù) S0 查表,正常使用球軸承 S0= 計(jì)算額定靜載荷 C’ 0r1= S0 P0r1= 810 C’ 0r1=1215N 許用轉(zhuǎn)速驗(yàn)算 載荷系數(shù) f1 1r1CP =150001485 =,查圖 f11= r22CP =150001485 =,查圖 f11= 載荷分布系數(shù) f2 r1a1FF =0,查圖 f21= r2a2FF =0,查圖 f22= 許用轉(zhuǎn)速 N N1=f11 f21 N0= 9500 N1=9576r/min N2=f12 f22 N0= 9500 N2=9576r/min 因?yàn)榉谴艥L筒主軸的轉(zhuǎn)速遠(yuǎn)小于 N1和 N2,故滿足要求。CC/W33 type, with steel 35 cages, fitted on four cast concrete foundations, made especially for this purpose. The shaft’s technical characteristics are presented in Fig. 1. Fig. 1. Fan shaft Bearings rotation operational frequencies at the shaft supports, placed in separate housings, are close to boundary values (operational frequency is 740 min?1, and the boundary one is 850 min?1, for the permanent greaselubrication solution). In order to pensate for errors in the bearing setting arrangement and in order to ensure the shaft’s axial movement due to thermal deformations, the outer bearing is axially movable and fitted next to the electric motor, while the inner bearing is axially immovable. In service conditions, proper fan operation is ensured by continual monitoring of the electric motor service temperature, as the driving machine, and of both bearings on the fan shaft. Due to high operating temperatures, the plant ponents’ cooling has been provided electric motor is air cooled, while the initial structural solution of water cooling was replaced by air cooling. Yet, however, in spite of the continual monitoring of the fresh air 36 fan assembly’s vital elements’ operational capability, a major breakdown occurred, . the volumetric shaft destruction. In order to establish the causes of the breakdown, a thorough examination of the quality of materials was undertaken (microstructure examining and determining the shaft material’s chemical and mechanical properties) [1] and design solution for the bearing setting arrangement was analyzed [2]. Literature [1] provides images of the breakdown status of the fixed support’s bearing assembly setting arrangement. Literature [2] provides proposed optional solutions, aimed at improving the actual structural design of the shaft setting arrangement at the immovable support. Bearing in mind that the bearing setting arrangement in the shaft’s fixed support is realized by means of a doublepressed joint: shaft– bushing and bushing– bearing inner ring, this paper depicts a thorough analysis of the pressed joints’ operational capability in the extreme service and design conditions. Based on the performed analysis, the contribution of the pressed joints to the fan shaft breakdown in thermal plants has been recognized. 2. Setting arrangement analysis in fixed shaft support T