【摘要】第二十二章二次函數(shù)專題6運(yùn)用待定系數(shù)法求二次函數(shù)的解析式武漢專版·九年級(jí)上冊(cè)一、含有一個(gè)待定系數(shù)1.已知拋物線y=x2-4x+c的頂點(diǎn)A在直線y=x+3上,則拋物線的解析式為__y=x2-4x+9__.2.在平面直角坐標(biāo)系中,二次函數(shù)y=mx2+(m-3)x-3(m0)的圖象與
2025-06-16 01:50
【摘要】......用待定系數(shù)法求遞推數(shù)列通項(xiàng)公式初探摘要:本文通過(guò)用待定系數(shù)法分析求解9個(gè)遞推數(shù)列的例題,得出適用待定系數(shù)法求其通項(xiàng)公式的七種類型的遞
2025-06-25 16:48
【摘要】待定系數(shù)法求二次函數(shù)的解析式,二次函數(shù)圖象的位置與a,b,c之間的關(guān)系,二次函數(shù)與x軸的交點(diǎn)情況及與一元二次方程根與系數(shù)之間的內(nèi)在聯(lián)系一、選擇題1.(08山東日照)若A(),B(),C()為二次函數(shù)的圖象上的三點(diǎn),則的大小關(guān)系是()A. B.C. D. 答案:B2.(2008浙江義烏)已知:二次函數(shù)的圖像為下列圖像之一,則
2025-04-07 22:55
【摘要】待定系數(shù)法求特殊數(shù)列的通項(xiàng)公式靖州一中 蔣利在高中數(shù)學(xué)教學(xué)中,經(jīng)常碰到一些特殊數(shù)列求通項(xiàng)公式,而這些問(wèn)題在高考和競(jìng)賽中也經(jīng)常出現(xiàn),是一類廣泛而復(fù)雜的問(wèn)題,歷屆高考常以這類問(wèn)題作為一道重大的試題。因此,在教學(xué)中,針對(duì)這類問(wèn)題,提供一些特殊數(shù)列求通項(xiàng)公式范例,幫助同學(xué)們?nèi)嬲莆者@類問(wèn)題及求解的一般方法。 求數(shù)列的通項(xiàng)公式,最為廣泛的的辦法是:把所給的遞推關(guān)系變形,使之成為某個(gè)等差數(shù)列
2025-06-25 16:50
2025-06-12 01:15
【摘要】高中數(shù)學(xué)方法篇之待定系數(shù)法要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來(lái)確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項(xiàng)式恒等,也就是利用了多項(xiàng)式f(x)g(x)的充要條件是:對(duì)于一個(gè)任意的a值,都有f(a)g(a);或者兩個(gè)多項(xiàng)式各同類項(xiàng)的系數(shù)對(duì)應(yīng)相等。待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問(wèn)題,通過(guò)引入一些待
2025-07-23 11:20
【摘要】待定系數(shù)法求函數(shù)解析式1、根據(jù)下列條件寫出相應(yīng)的函數(shù)關(guān)系式.(1)若直線y=m+1經(jīng)過(guò)點(diǎn)(1,2),則該直線的解析式是(2)一次函數(shù)y=kx+b的圖像如圖所示,則k,b的值分別為()21,1,1C.21,1,1
2024-11-28 16:35
【摘要】待定系數(shù)法要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來(lái)確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項(xiàng)式恒等,也就是利用了多項(xiàng)式f(x)g(x)的充要條件是:對(duì)于一個(gè)任意的a值,都有f(a)g(a);或者兩個(gè)多項(xiàng)式各同類項(xiàng)的系數(shù)對(duì)應(yīng)相等。待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問(wèn)題,通過(guò)引入一些待定的系數(shù),轉(zhuǎn)化為
2025-01-14 11:11
【摘要】精品資源待定系數(shù)法在不等式中的應(yīng)用在解(證)不等式問(wèn)題時(shí),最常用的解題技巧是調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)。但調(diào)整系數(shù)、拆項(xiàng)、補(bǔ)項(xiàng)時(shí),既要考慮不等式的結(jié)構(gòu),又要符合相關(guān)要求,這些就需要待定系數(shù)法兼顧幾方面的要求。下面舉例說(shuō)明。例1已知函數(shù)y=的最大值為7,最小值為-1,求此函數(shù)的表達(dá)式.分析:求函數(shù)的表達(dá)式,實(shí)際上就是確定系數(shù)m、n
2025-06-25 16:51