【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡記為S
2024-12-08 02:41
【摘要】課題:同角三角函數(shù)關(guān)系班級:姓名:【學(xué)習(xí)目標(biāo)】,并體會(huì)它們在三角函數(shù)式的化簡、求值和三角恒等式證明中的應(yīng)用?!菊n前預(yù)習(xí)】1、角?的終邊經(jīng)過點(diǎn)(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
【摘要】高中新課程數(shù)學(xué)必修④第二課時(shí)問題提出的最小正周期是,且,能否確定函數(shù)f(x)的圖象和性質(zhì)?()2sin(),(0,)2fxxxR??????????其中?(0)3f?,對于與角有關(guān)的實(shí)際
2024-11-18 12:17
【摘要】第一篇:高中數(shù)學(xué)-三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsi...
2025-10-02 20:10
【摘要】§、正弦、余弦函數(shù)圖象三角函數(shù)圖象與性質(zhì)復(fù)習(xí):三角函數(shù)線xyoPMT1A的終邊-1-11正弦函數(shù)y=sinx和余弦函數(shù)y=cosx圖象的畫法1、幾何法2、描點(diǎn)法1-10yx●●●一、正弦函數(shù)y=
2025-10-28 18:16
【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點(diǎn)O離地面m,風(fēng)車圓周上一點(diǎn)A從最低點(diǎn)O開始,運(yùn)動(dòng)t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2024-12-08 20:23
【摘要】三角函數(shù)的圖象制作主講:劉曉波高考中涉及到的方面主要是:1.用五點(diǎn)法畫出三角函數(shù)的圖象.2.已知y=Asin(ωx+φ)的圖象,確定函數(shù)的解析式.3.三角函數(shù)的圖形變換.4.三角函數(shù)圖象的對稱性.(掌握圖象的對稱軸及對稱中心)返回結(jié)束下一頁例1:作函數(shù)
2025-10-31 00:49
【摘要】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第1章三角函數(shù)本章知識整合蘇教版必修4網(wǎng)絡(luò)構(gòu)建三角函數(shù)基本概念的應(yīng)用若角θ的終邊與函數(shù)y=-2|x|的圖象重合,求θ的各三角函數(shù)值.分析:由于y=-2|x|=?????-2x,x≥0,2x,x<0的圖象
2024-12-05 03:23
【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對于任意一個(gè)0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
【摘要】課題:三角函數(shù)的誘導(dǎo)公式(1)班級:姓名:一:學(xué)習(xí)目標(biāo)1.通過學(xué)生的探究,明了三角函數(shù)的誘導(dǎo)公式的來龍去脈,理解誘導(dǎo)公式的推導(dǎo)過程;2.通過誘導(dǎo)公式的具體運(yùn)用,熟練正確地運(yùn)用公式解決一些三角函數(shù)的求值、化簡和證明問題;二:課前預(yù)習(xí)教學(xué)重點(diǎn):
2024-11-20 01:06
【摘要】二倍角的三角函數(shù)(1)【學(xué)習(xí)目標(biāo)】、余弦、正切公式;、化簡、恒等證明?!緦W(xué)習(xí)重點(diǎn)難點(diǎn)】[來重點(diǎn):;。難點(diǎn):理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù)。【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo):、余弦、正切方式:sin(α+β)=(S???)cos
2024-11-20 01:05