【摘要】談一類遞推數(shù)列求通項(xiàng)公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項(xiàng)的問(wèn)題.它的基本形式是:已知1a及遞推關(guān)系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結(jié)合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-08 20:21
【摘要】一、復(fù)習(xí)引入1、等差數(shù)列的定義,2、通項(xiàng)公式,3、遞推公式?閱讀課本P48~50,思考以下問(wèn)題:?1、書本上的數(shù)列①②③④有何共同特點(diǎn)??2、等比數(shù)列的定義??3、等比數(shù)列的公比如何定義??4、書本上的數(shù)列①②③④的公比依次是多少?其通項(xiàng)公式分別是多少?一、2、自學(xué)等比數(shù)列
2025-01-18 01:33
【摘要】等比數(shù)列的前n項(xiàng)和第一課時(shí)::an=amqn-m2.通項(xiàng)公式:an=a1qn-1等比數(shù)列要點(diǎn)整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2024-11-18 12:17
【摘要】第9課時(shí):§等比數(shù)列(3)【三維目標(biāo)】:一、知識(shí)與技能1掌握“錯(cuò)位相減”的方法推導(dǎo)等比數(shù)列前項(xiàng)和公式;,并能運(yùn)用公式解決簡(jiǎn)單的實(shí)際問(wèn)題;二、過(guò)程與方法,提高學(xué)生的建模意識(shí)及探究問(wèn)題、分析與解決問(wèn)題的能力,體會(huì)公式探求過(guò)程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).“錯(cuò)位相減法”這種算法中,體會(huì)“消除差
2025-06-07 23:07
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)16等比數(shù)列(第2課時(shí))新人教版必修51.一直角三角形三邊邊長(zhǎng)成等比數(shù)列,則()A.三邊邊長(zhǎng)之比為3∶4∶5B.三邊邊長(zhǎng)之比為3∶3∶1C.較大銳角的正弦為5-12D.較小銳角的正弦為5-12答案D解析不妨設(shè)A最小,C為直角,依題意???
2024-11-28 01:20
【摘要】第3課時(shí)等比數(shù)列的前n項(xiàng)和知能目標(biāo)解讀n項(xiàng)和公式的推導(dǎo)方法--錯(cuò)位相減法,并能用其思想方法求某類特殊數(shù)列的前n項(xiàng)和.n項(xiàng)和公式以及性質(zhì),并能應(yīng)用公式解決有關(guān)等比數(shù)列前n項(xiàng)的問(wèn)題.在應(yīng)用時(shí),特別要注意q=1和q≠1這兩種情況.n項(xiàng)和公式解決有關(guān)的實(shí)際應(yīng)用問(wèn)題.重點(diǎn)難點(diǎn)點(diǎn)撥重點(diǎn):掌握等比數(shù)列的求和公式,會(huì)
2024-11-19 20:39
【摘要】等比數(shù)列的通項(xiàng)公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項(xiàng)和_______.【例2】等差數(shù)列的前項(xiàng)和為,且,則.【例3】設(shè)等比數(shù)列的前項(xiàng)和為,若,則()A. B. C. D.【例4】設(shè)是公比為的等比數(shù)列,,令,若
2025-07-25 06:33
【摘要】第一篇:等比數(shù)列教案 等比數(shù)列(復(fù)習(xí)課)學(xué)案 :①理解等比數(shù)列的概念;②掌握等比數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式及應(yīng)用③了解等比數(shù) 列與指數(shù)函數(shù)的關(guān)系 發(fā)展要求:①掌握等比數(shù)列的典型性質(zhì)及應(yīng)用。②...
2024-11-05 01:45
【摘要】等比數(shù)列(第2課時(shí))學(xué)習(xí)目標(biāo)靈活應(yīng)用等比數(shù)列的定義及通項(xiàng)公式;深刻理解等比中項(xiàng)的概念;熟悉等比數(shù)列的有關(guān)性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過(guò)自主探究、合作交流獲得對(duì)等比數(shù)列性質(zhì)的認(rèn)識(shí).充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型,體會(huì)數(shù)學(xué)是來(lái)源于現(xiàn)實(shí)生活,并應(yīng)用于現(xiàn)實(shí)生活的,數(shù)學(xué)是豐富多彩的而不是枯燥無(wú)味的,提高學(xué)習(xí)的興趣.合
2024-12-09 03:42
【摘要】第一篇:等比數(shù)列講義 等比數(shù)列 一知識(shí)點(diǎn)回顧 如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比都等于_______,那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)列叫做等比數(shù)列的________,用字母_...
2024-10-12 01:15
【摘要】[例1]在等比數(shù)列中:(1)若a4=27,q=-3,求a7;(2)若a2=18,a4=8,求a1與q;(3)若a5-a1=15,a4-a2=6,求a3.??????.,,,;,,,kknSqaaSqaa求已知求已知中在等比數(shù)列例324312
2025-05-03 18:33
【摘要】第4課時(shí)等差、等比數(shù)列的應(yīng)用?要點(diǎn)·疑點(diǎn)·考點(diǎn)?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點(diǎn)·疑點(diǎn)·考點(diǎn)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31