【摘要】談一類遞推數(shù)列求通項公式的典型方法除了我們經(jīng)常接觸的最基本的等差數(shù)列和等比數(shù)列之外,我們還經(jīng)常遇到一類遞推數(shù)列求通項的問題.它的基本形式是:已知1a及遞推關系1nnapaq???((1)0)pqp??求na.其求解方法有多種,下面結(jié)合具體例子介紹三種較為典型的解法.題目:在數(shù)列{}na(不是常數(shù)數(shù)列)中,1122nn
2024-12-08 20:21
【摘要】一、復習引入1、等差數(shù)列的定義,2、通項公式,3、遞推公式?閱讀課本P48~50,思考以下問題:?1、書本上的數(shù)列①②③④有何共同特點??2、等比數(shù)列的定義??3、等比數(shù)列的公比如何定義??4、書本上的數(shù)列①②③④的公比依次是多少?其通項公式分別是多少?一、2、自學等比數(shù)列
2025-01-18 01:33
【摘要】等比數(shù)列的前n項和第一課時::an=amqn-m2.通項公式:an=a1qn-1等比數(shù)列要點整理4.性質(zhì):若m、n、p、q∈N*,m+n=p+q,則am·an=ap·a
2025-11-09 12:17
【摘要】第9課時:§等比數(shù)列(3)【三維目標】:一、知識與技能1掌握“錯位相減”的方法推導等比數(shù)列前項和公式;,并能運用公式解決簡單的實際問題;二、過程與方法,提高學生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).“錯位相減法”這種算法中,體會“消除差
2025-06-07 23:07
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)16等比數(shù)列(第2課時)新人教版必修51.一直角三角形三邊邊長成等比數(shù)列,則()A.三邊邊長之比為3∶4∶5B.三邊邊長之比為3∶3∶1C.較大銳角的正弦為5-12D.較小銳角的正弦為5-12答案D解析不妨設A最小,C為直角,依題意???
2025-11-19 01:20
【摘要】第3課時等比數(shù)列的前n項和知能目標解讀n項和公式的推導方法--錯位相減法,并能用其思想方法求某類特殊數(shù)列的前n項和.n項和公式以及性質(zhì),并能應用公式解決有關等比數(shù)列前n項的問題.在應用時,特別要注意q=1和q≠1這兩種情況.n項和公式解決有關的實際應用問題.重點難點點撥重點:掌握等比數(shù)列的求和公式,會
2025-11-10 20:39
【摘要】等比數(shù)列的通項公式與求和典例分析【例1】在等比數(shù)列中,,,則它的公比_______,前項和_______.【例2】等差數(shù)列的前項和為,且,則.【例3】設等比數(shù)列的前項和為,若,則()A. B. C. D.【例4】設是公比為的等比數(shù)列,,令,若
2025-07-25 06:33
【摘要】第一篇:等比數(shù)列教案 等比數(shù)列(復習課)學案 :①理解等比數(shù)列的概念;②掌握等比數(shù)列的通項公式與前n項和公式及應用③了解等比數(shù) 列與指數(shù)函數(shù)的關系 發(fā)展要求:①掌握等比數(shù)列的典型性質(zhì)及應用。②...
2025-10-27 01:45
【摘要】等比數(shù)列(第2課時)學習目標靈活應用等比數(shù)列的定義及通項公式;深刻理解等比中項的概念;熟悉等比數(shù)列的有關性質(zhì),并系統(tǒng)了解判斷數(shù)列是否是等比數(shù)列的方法.通過自主探究、合作交流獲得對等比數(shù)列性質(zhì)的認識.充分感受數(shù)列是反映現(xiàn)實生活的模型,體會數(shù)學是來源于現(xiàn)實生活,并應用于現(xiàn)實生活的,數(shù)學是豐富多彩的而不是枯燥無味的,提高學習的興趣.合
2024-12-09 03:42
【摘要】第一篇:等比數(shù)列講義 等比數(shù)列 一知識點回顧 如果一個數(shù)列從第2項起,每一項與它的前一項的比都等于_______,那么這個數(shù)列叫做等比數(shù)列,這個常數(shù)列叫做等比數(shù)列的________,用字母_...
2025-10-03 01:15
【摘要】[例1]在等比數(shù)列中:(1)若a4=27,q=-3,求a7;(2)若a2=18,a4=8,求a1與q;(3)若a5-a1=15,a4-a2=6,求a3.??????.,,,;,,,kknSqaaSqaa求已知求已知中在等比數(shù)列例324312
2025-05-03 18:33
【摘要】第4課時等差、等比數(shù)列的應用?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析要點·疑點·考點按復利計算利息的一種儲蓄,本金為a元,每期利率為r,存期為x
2025-04-30 03:31