【摘要】行列式與矩陣n階行列式的概念行列式的性質(zhì)與計算Cramer法則第六章矩陣及其計算逆矩陣與矩陣的秩分塊矩陣矩陣的初等變換n階行列式第一節(jié)學(xué)習(xí)重點余子式與代數(shù)余子式的概念n階行列式的概念●行列式的引入引
2024-10-16 21:34
【摘要】上一頁下一頁首頁結(jié)束返回線性代數(shù)第一章§行列式的性質(zhì)行列式上一頁下一頁首頁結(jié)束返回線性代數(shù)性質(zhì)1行列式D與它的轉(zhuǎn)置行列式D′相等一、行列式的性質(zhì)111212122212112111222212nnnnnnnn
2025-08-05 15:40
【摘要】+-稱為二階行列式.一、二階行列式§例:解二元一次方程組二、n階行列式的遞推定義定義:由一個數(shù)組成的一階方陣和它的行列式就是這個數(shù)本身。定義在n階方陣中去掉元素所在的第i行和第j列后,余下的n-1階行列式,稱為A中元素
2025-04-30 18:25
【摘要】第二章行列式行列式在歷史上原為求解線性方程組而引入,但在線性代數(shù)和其它數(shù)學(xué)領(lǐng)域以及工程技術(shù)中,行列式都是一個很重要的工具。本章主要介紹行列式的定義、性質(zhì)及其計算方法?!於A、三階行列式,全排列及其逆序數(shù)§n階行列式的定義§行列式的性質(zhì)(1)§行列式性質(zhì)(2)
2024-11-03 20:42
【摘要】第三章行列式線性方程組和行列式排列n階行列式子式和代數(shù)余子式行列式依行(列)展開克拉默法則課外學(xué)習(xí)6:行列式計算方法課外學(xué)習(xí)7:q_行列式及其性質(zhì)能夠作出數(shù)學(xué)發(fā)現(xiàn)的人,是具有感受數(shù)學(xué)中的秩序、和諧、對稱、整齊和神秘美等能力的人,而且只限于這種人。――龐加萊(Poincare
2025-01-15 16:55
【摘要】Cramer法則?n階行列式的定義、性質(zhì)及計算方法?克拉默(Cramer)法則第二章行列式1.二階行列式對于給定的二元線性方程組11112212112222(1)axaxbaxaxb???????其系數(shù)矩陣11122122aa
2025-05-07 00:51
【摘要】.......說明:黃色高亮部分是必做題目,其他為選作第一章行列式專業(yè)班姓名學(xué)號第一節(jié)行
2025-03-25 07:38
【摘要】行列式習(xí)題精選一、判斷下列各項是否為五階行列式的項?(包括符號)(1)-a21a34a15a23a52解:由于其中的元a21,a23在同一行,故不是五階行列式的項。(2)+a32a15a24a53a41解:將其重新排列為+a15a24a32a41a53容易看出其中的五個元都不同行,也都不同列??扇1=5,j2=4,j3=2,j4=1,j5
2025-08-05 16:27
【摘要】用消元法解二元線性方程組???????.,22221211212111bxaxabxaxa??1??2??:122a?,2212221212211abxaaxaa????:212a?,1222221212112abxaaxaa??,得兩式相減消去2x一、二階行列式的引入;21222112112
2025-05-07 00:52
【摘要】第三節(jié)行列式及其性質(zhì)行列式的定義行列式的性質(zhì)行列式的計算行列式的定義二階行列式與三階行列式二階行列式定義abadbccd??abcd主對角線元素之積減去副對角線元素之積根據(jù)定義算一算6253???cossinsincos
【摘要】線性代數(shù)大學(xué)-----行列式經(jīng)典例題例1計算元素為aij=|i-j|的n階行列式.解方法1由題設(shè)知,=0,,,故其中第一步用的是從最后一行起,逐行減前一行.第二步用的每列加第列.方法2=例2.設(shè)a,b,c是互異的實數(shù),證明:????的充要條件是a+b+c=0.證明:考察
【摘要】§行列式的基本性質(zhì)第二章行列式直接用定義計算行列式是很麻煩的事,本節(jié)要導(dǎo)出行列式運算的一些性質(zhì),利用這些性質(zhì),將使行列式的計算大為簡化。轉(zhuǎn)置行列式:把n階行列式111212122212nnnnnnaaaaaaDaaa?的第i行變?yōu)榈趇
2025-08-11 12:05