【摘要】曲線方程及圓錐曲線典型例題解析一.知識要點1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標系;“設(shè)”:設(shè)動點坐標。建立適當?shù)闹苯亲鴺讼?,?x,y)表示曲線上任意一點M的坐標。(1)所研究的問題已給出坐標系,即可直接設(shè)點。(2)沒有給出坐標系,首先要選取適當?shù)淖鴺讼怠?、現(xiàn)
2025-07-26 09:19
【摘要】WORD資料可編輯高中數(shù)學圓錐曲線基本知識與典型例題第一部分:橢圓1.橢圓的概念在平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距.集合P={M||MF1|+|
2025-04-04 05:07
【摘要】軌跡方程經(jīng)典例題一、軌跡為圓的例題:1、必修2課本P124B組2:長為2a的線段的兩個端點在軸和軸上移動,求線段AB的中點M的軌跡方程:必修2課本P124B組:已知M與兩個定點(0,0),A(3,0)的距離之比為,求點M的軌跡方程;(一般地:必修2課本P144B組2:已知點M(,)與兩個定點的距離之比為一個常數(shù);討論點M(,)的軌跡方程(分=1,與1進行討論)
2025-03-25 00:04
【摘要】高中數(shù)學圓錐曲線基本知識與典型例題第一部分:橢圓1.橢圓的概念在平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a0,c0,且a,c為常數(shù):(1)若ac,則集合P為橢圓;(2)
【摘要】WORD資料可編輯高三文科數(shù)學專題復(fù)習之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內(nèi)到兩定點的距離的和為常數(shù)(大于)的動點的軌跡叫橢圓即當2﹥2時,軌跡
2025-04-17 13:10
【摘要】高考圓錐曲線的七種題型題型一:定義的應(yīng)用1、圓錐曲線的定義:(1)橢圓(2)橢圓(3)橢圓
2025-05-30 22:40
【摘要】高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達定理,在這里我將這個問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就是只需考慮未知數(shù)個數(shù)和條件個數(shù),。使用韋達定理時需注意成立的條件。題型4有關(guān)定點,定值問題。將與之無關(guān)的參數(shù)提取出來,再對其系數(shù)進行處理。(湖北卷)設(shè)A、B是橢圓上的兩點,點
2025-05-30 22:41
【摘要】......圓錐曲線的七種??碱}型題型一:定義的應(yīng)用1、圓錐曲線的定義:(1)橢圓(2)雙曲線
2025-04-17 13:05
【摘要】......高考圓錐曲線壓軸題型總結(jié)直線與圓錐曲線相交,一般采取設(shè)而不求,利用韋達定理,在這里我將這個問題分成了三種類型,其中第一種類型的變式比較多。而方程思想,函數(shù)思想在這里也用得多,兩種思想可以提供簡單的思路,簡單的說就
【摘要】(二)雙曲線知識點及鞏固復(fù)習如果平面內(nèi)一個動點到兩定點距離之差的絕對值等于正的常數(shù)(小于兩定點間的距離),那么動點的軌跡是雙曲線若一個動點到兩定點距離之差等于一個常數(shù),常數(shù)的絕對值小于兩定點間的距離,那么動點的軌跡是雙曲線的一支F1,F(xiàn)2為兩定點,P為一動點,(1)若||PF1|-|PF2||=2a①02a|F1F2|則動點P的軌跡是
2025-07-22 22:38
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識:1、求曲線(或直線)方程的思考方向大體有兩種,一個方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個方向是
2025-07-25 00:15
【摘要】第1頁共35頁普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復(fù)習教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學習,進一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29