【正文】
al importance to achieve stability through membrane stiffness. Shell bending needs to be avoided by finding the ―right‖ geometry, so that under the selfweight only membrane action results. Membrane action makes efficient use of material. The important structural design challenge lies in the determination of a threedimensional (3D) surface that will hold the skeletal shell. In the twentieth century, both architects and engineers [Gaudi (Huerta 2021), Otto (Otto et al. 1995), and Isler (Billington 2021)] experimented with physical form finding techniques, which for a given material, created a set of boundary conditions and gravity loading that found the efficient 3D structural shape. The importance of finding a funicular shape for steel shells lies in the fact that the selfweight (gravity loads caused by steel and glass) contributes largely to the load to be resisted. The subelements need to be loaded axially to make most efficient use of the section profile. Numerical form finding techniques [force density (Schek 1974) and dynamic relaxation (Day 1965)] have been successfully applied to weightless systems whose shape is set by the level of internal prestress and boundary supports. However, when it es to funicular systems whose shape is not determined by initial prestress but by gravity loads (such as the case for masonry, concrete, or steel shells), fewer numerical methods have been developed. This is mainly because of the difficulty of finding optimal forms for those shells that rely on both tensile and pressive membrane stresses to resist dead load. Kilian and Ochsendorf (2021) presented a shapefinding tool for statically determinate systems based ona particlespring system solved with a RungeKutta solver, used in puter graphics for cloth simulation. Block and Ochsendorf (2021) published the thrust work analysis to establish the shape of pure pression systems. For the initial design petition for the Dutch Maritime Museum roof project, the dynamic relaxation method usually used for prestressed systems was adapted to deal with 3D funicular systems with tension and pression elements under gravity loads. Competition Design for a Steel Glass Shell over the NSA Courtyard The Dutch Maritime Museum planned a thorough museum renovation in the near future. The restricted space in the seventeenth century historic building hinders the movement of visitors. The courtyard needed to be integrated into the museum’s circulation space, sheltered from weather, and kept to a minimal indoor temperature. An invited design petition was held for a new glass roof that added value to the historic building. In 2021, Ney and Partners, a Brusselsbased engineering design consultancy, won this petition with a steel and glass shell design. The shell manufacturing and construction processes took place between 2021 and 2021. In 2021, the project was awarded the Amsterdam Architectural Prize. Initial Planar Geometry In the late seventeenth century, the historic building housing the museum (shown in Fig. 4) was the headquarters of the admiralship. It was the instrument and symbol of the Dutch maritime power. The development of this seafaring nation was closely linked to the production of sea charts and the associated sciences, such as geometry, topography, and, astronomy. The classic building also uses geometry as a basis for design. The choice for the initial twodimensional (2D) geometry of the glass roof tells the spectator a story about the building’s history and its close relationship to the history of the sea. At the origin of this 2Dgeometry lies a loxidromemap with 16 wind roses (shown in Fig. 4). This geometric drawing is found on sea charts displayed inside the museum. This geometric 2D diagram is the basis for the structural mesh. A lightemitting diode, with variable color and intensity, is placed at the intersection of the structural subelements. The cupola’s structural mesh reads as a fine line drawing against the sky, and bees a powerful scenographic instrument and a symbolic hemisphere. Physical Numerical Form and Its Analysis Starting from this geometric 2D mesh pattern, an exact 3D shell surface needs to be developed that will hold the shell. The material choice for the skeletal shell is set to steel (taking both pressive and tensile loads). The existing situation imposes the contextual boundary conditions. ? The shell’s height cannot appear above the historic building’s ridge. ? The courtyard fa231。 Construction constraint。 Historic sites。 2021 年 ,該項(xiàng)目被授予阿姆斯特丹建筑獎(jiǎng)。布勞克 和 奧科申朵夫 (2021)發(fā)表了 應(yīng) 力網(wǎng)絡(luò)分析 來(lái) 確定 純 壓力體系 。 結(jié)構(gòu)設(shè)計(jì) 最 重要的的挑戰(zhàn) 首先 在于確定 約束骨架 的殼 體的 三維 (3 d)表面。 他們?cè)O(shè)計(jì) 了 將屋面 分為平面四邊形網(wǎng)格 方法 , 能夠 獲得 正確的 移動(dòng) 型屋面 ,和 大小 可 變型 屋 面 。 幾個(gè)世紀(jì)以來(lái) ,建筑學(xué)已經(jīng)能夠圍繞簡(jiǎn)單的幾何圖形來(lái)判斷建筑物在結(jié)構(gòu)和構(gòu)造上的質(zhì)量。 然而, 設(shè)計(jì)師往往忽略 這樣 一個(gè)事實(shí) ,即 建筑物 自由 的結(jié)構(gòu) 形式由傳統(tǒng)的 建筑和結(jié)構(gòu)方式 構(gòu)造產(chǎn)生 。 大英博物館法院屋頂是滑動(dòng)軸承支撐 ,這樣 就 沒有水平推力落在歷史博物館的砌體墻 上 (威廉姆斯 2021)。 頂部覆蓋玻璃 的單層鋼骨架的形狀由雕塑、幾何、物理以及施工條件等因素共同決定。在十九世紀(jì)下半葉 , 大規(guī)模生產(chǎn)的負(fù)擔(dān)得起的鐵進(jìn)一步鼓勵(lì) 了高層 和大跨度 由鋼材 和玻璃 建成的展 廳 的 設(shè)計(jì)和施工 。麥克斯韋互惠網(wǎng)絡(luò)。荷蘭。 DOI: /(土木 ) 。在 20世紀(jì)末到 21 世紀(jì)初 ,外露的 鋼骨架玻璃殼設(shè)計(jì) 慢慢出現(xiàn)。 and Chris Williams4 摘要 :在對(duì) 荷蘭阿姆斯特丹荷蘭海事博物館 頂部覆蓋的 一種高效的結(jié)構(gòu) 形式進(jìn)行探究的文章中,作者 簡(jiǎn)要討論 了作用力對(duì) 最早的玻璃屋頂覆蓋物 的 影響。最后,雕琢出的平面 向人們展示了典雅、 耐用。屋頂 。結(jié)構(gòu) 約束 。 十九世紀(jì)中期 , 溫室類型學(xué)已全面發(fā)展,由此便產(chǎn)生了文化室、暖房以及冬景花園 [例如 , 皇家溫室、拉肯 ,比利時(shí) (建于 1876 年 )現(xiàn)于 Fig. 1 (Woods and Swartz 1988)].冬季花園 是本文特別感興趣的 ,因?yàn)樗?是 一個(gè)社交場(chǎng)合 ,與 一 棟私人豪宅或公共建筑 及其接近 。 和 the Smithsonian Institute,Washington, DC (Foster and Partners, and Buro Happold in 2021)]。 其限制條件通常包括高度的限制以及強(qiáng)加于現(xiàn)有建筑物 ,尤其是水平方向,最大負(fù)荷的限制。 這些形狀依靠彎曲 支撐受力 最有效的基本負(fù)荷的方法。 當(dāng)然,這也 一直 受到立體 解析幾何和設(shè)計(jì)者想象力 強(qiáng)加的 規(guī)則 的 限制。 舍貝爾在鋼殼 結(jié)構(gòu)的工作 是 一種 創(chuàng)新。 薄膜效 應(yīng)使材料的性能得以充分發(fā)揮 。 基利恩和奧科申朵夫 (2021) 為 靜定系統(tǒng) 呈現(xiàn) 了一種 基于粒子 彈簧系統(tǒng)的面料仿真模型 的 結(jié)構(gòu)形狀探索 工具 ,該系統(tǒng)是 用龍格 庫(kù)塔求解器求解 。外殼 的 制造和施工在 2021 年和 2021 年之間。 Glass。 Planarity faces。 (c) British Museum Courtyard (United Kingdom, built in 2021) steel roof adds value to the museum by expanding the u