【正文】
oltage () not only made the power supply for the node simple but also saved lots of energy, which otherwise, would have been wasted in regulating it for different voltages. To utilize the battery energy to the maximum, a DC/DC converter, TPS63001 buck booster from Texas Instruments [17], is used. It provides a constant output with a maximum of of current。s design viz. the strict energy constraints. The recent past has seen a wide variety of WSN applications namely Habitat monitoring, Seismic Detection, Environmental monitoring, Health monitoring systems etc., of which mobile nodes, dynamic work topology, munication failure, limited power supply, harsh environmental conditions are few of the varied challenges. To address the issues in wildlife monitoring and to understand the plex relationship of animals with their surrounding, scientists had to collect the required data manually by visiting the site. In some cases the search was made easier by tagging the animal with radio transmitters to relocate them easily, but yet the seemingly bigger part of the picture remained unaddressed: the efficient data collection. There are numerous reasons why it is difficult and not advisable to visit the site frequently. Firstly, stud ying the species without avoiding human contact is almost impossible. Frequent human visits or disturbances affect the species in ways unknown [1]. Secondly, keeping track of animal activity in the dark after dusk bee more of an adventure than an experiment or a study. Finally, it is not only time consuming but also money intensive job to keep track of animal migration as well as its feeding habits without using dedicated low cost sensor working equipments. An automated system would thus be desired, equipping natural spaces with numerous worked sensor nodes to enable longterm data collection at times (even at night), scales and resolution which are very difficult if not impossible, to achieve by manual monitoring. It also allows collecting data without disturbing the ecology and yet represents a substantially more economical method for conducting longterm studies than traditional one. Significant proofs of concepts and previous attempts to monitor wildlife movement and habitat have been made like the ZebraNet [2] and Great Duck Island Experiment [1]. Learning from the experiences of the aforementioned, wildCENSE is an attempt on the same footprint, designed to have lower power consumption, better range, varied environment sensing features and more robust data backup system. wildCENSE is a WSN system which attempts to monitor the behavior and migration patterns of Barasingha (Swamp Deer). System being designed can be suitable for many more species of medium to large size. Equipped with a GPS, Radio transceiver and various other sensors, the hardware is designed to support the needs of wildlife monitoring. The captured data can be provided to the wildlife researchers for their research and study purposes. It will be helpful to them to understand the needs of the endangered species, and the relationship these species share with the surroundings. The paper fundamentally discusses the hardware and software design architecture of the wildCENSE system at the node, base and work levels. In particular, it embodies the issues and constraints, which were met during the design and testing of the system. II. GPS BASED ANIMAL TRACKING SYSTEM The Barasingha is native to India and Nepal. Once it populated throughout the basins of the Indus, Ganges and Brahmaputra rivers, as well as parts of central India reaching out till the river Godavari. But in past few decades its population has declined significantly listing them as endangered species by IUCN from 1984 to 1996 and as vulnerable since 1996 [4]. Wildlife researchers while surveying Jhilmil Tall (Uttaranchal) area came across some 30 heads of the Barasingha on February 3, 2021 [5]. Trails indicate that they might have migrated across the Nepal border. But yet their exact migratory path is unknown。除了高效節(jié)能, 它還 提供詳細的 位置 信息且擁有 非常高的精度。為了滿足上述要求,鋰離子電池包 8Ah 的容量是足夠的。 表 1 說明了 節(jié)點上的各個組件的 電力需求。這個斷電模式的特點是 把所有的一切 都 關機,并且通常包括時鐘源 [7], 在 的電壓下 消耗的電流小于 10uA 的 ―看門狗 ‖。太陽能發(fā)電 被 附加上去以便 進一步增強節(jié)點的 壽命 。 當 權衡節(jié)點 的 重和 它的能量所需 時, 野生動物監(jiān)測方案變得更具挑戰(zhàn)性 。無線收發(fā)機, GPS 和外接存儲器都 有 獨立的端口,即USART0, USART1, SPI,我們 都 能同時使用它們。 如 圖 3 所 示。這傳感器是 被一個蓋帽 (IP67 標準 )遮著, 使其 感知環(huán)境的 同時 達到 保護它 的作用。 內存 ——愛特梅爾公司 AT45DB16B 數(shù)據(jù) flash[11],我們需要一個大的 內存存儲空間來彌補基站與節(jié)點之間通信的 延遲。 為了 利用 GPS 的 ―熱啟動 ‖功能 ,我們使用 一個電池備份機制。 由于運行環(huán)境的不同, RTC 在不同的節(jié)點 上運行是有偏差的 。這使我們能夠 消 除 軟件章節(jié) 節(jié)描述的 多路復用的開銷。能源的提供將會在 節(jié) 更詳細地討論 III.系統(tǒng)概述 大體上生物傳感 網 系統(tǒng)分為 如圖 1 所示 的幾個部分 ,即硬件、相關系統(tǒng)軟件和 驅動器 ,中間設備 服務器 連接數(shù)據(jù) 記錄和 web 主機服務 設備 最后基于瀏覽器的可視化軟件。為了彌補時間上的 延遲 ,節(jié)點 上安裝了一個較大的 外部 flash 用 來容納數(shù) 據(jù)在節(jié)點上的生成時間以及傳輸過程中獲取的時間 。 動物的 生活 模式需要被記錄下來。 GPS 的動物跟蹤系統(tǒng) 生物傳感網 是一種試圖讓研究人員了解更多有關沼鹿的生活習性的途徑。它是擁有 更低 能耗 ,更大 的范圍、 更加 多樣的環(huán)境感知特性和更健壯數(shù)據(jù)備份 的 系統(tǒng)。人類 頻繁的 訪問或 打 擾 已潛移默化中對物種產生了 影響 [1]。 對于正在移動的節(jié)點 這個任務 將 變得更具挑戰(zhàn)性。每一個點將顯示五個信息,即:位置(用GPS),溫度,濕度,前進方向和環(huán)境亮度。此外,該節(jié)點將有一個實時時鐘同步網絡和保持時間信息。 工程所要 進一步 研究的 問題 是 如何使節(jié)點的電力供應 足夠 維持 到最后一年。其次 ,在晚上 追蹤活動的動物 與其說是做實驗或做 研究 還不如說是冒險 。 野外感知系統(tǒng) 是一個 用于 監(jiān)控 沼鹿 (澤鹿 )行為和遷移模式的 無線傳感器網絡系統(tǒng) 。 輸入的該系統(tǒng)的設計 要有哪些功能由 野生動物研究人員 輸入 。自從監(jiān) 測區(qū)域變 大 后 ,獲得的數(shù)據(jù)需要不斷的從 一個節(jié)點 傳 到 另一個 節(jié)點依據(jù)直到它轉移到一個基站。 節(jié)討論更詳細的 討論了數(shù)據(jù)的 交流 問題 。 圖 1 生物傳感網 系統(tǒng)概述 1)硬件架構 完整的傳感器節(jié)點連同電池充電系統(tǒng)的 是以一個項圈的 形式 呈現(xiàn)的,它被套在了沼鹿的脖子上 。 當連續(xù)通信是, 內部諧振器是不夠準確 ,這時需要在外部加上一個 MHz 的晶振 。 為了 維護節(jié)點 與節(jié)點之間通信 的準確性 ,RTC 與 GPS 設備每五天 實現(xiàn)一次同步 ,保持 1 秒內的時鐘偏差。 無線電收發(fā)機 ——XBeePro[10]——這個數(shù)碼網絡關鍵 通信模 式 是基于 IEEE ZigBee /標準。對于我們的無線傳感器網絡 ,一個節(jié)點需要收集的數(shù)據(jù)來自同行 ,這 要求更高內存容量。 我們使用一個 TAOS 的 TSL2561t[15]這是一款 高靈敏度的數(shù)字光傳感器。節(jié)點的大小為 56平方厘米,僅重 34gms。 當 GPS 處于開機狀態(tài),并 在 修理的過程 , 如果附近 有 節(jié)點 /基 站則可以無線電進行數(shù)據(jù)的傳輸 。在本節(jié)中,我們將 在軟件和硬件水平上 討論我們的 能源管理 技術 ,和野外感知體系 。此外,未用引腳 和 數(shù)字輸入緩沖器 分別被配置成 輸出引腳和禁用,最大限度地減少他們的能源泄漏。 掉電 檢測器是 在睡眠模式狀態(tài) 狀態(tài)下 [18]唯一 工作 的模擬量模塊。以下假設 是基于每個節(jié)點的組件能工作最低一