【正文】
系統(tǒng)并在實(shí)驗(yàn)室調(diào)試成功后在現(xiàn)場卻出現(xiàn)了“死機(jī)”、“程序走飛”等現(xiàn)象這主要是單片機(jī)的復(fù)位電路設(shè)計(jì)不可靠引起的[13]。大容量的電解電容同樣也是為了起到濾低頻噪聲和穩(wěn)壓的作用,在輸出端同種瓷片電容并聯(lián)使用是為了降低其ESR,ESR越大會(huì)導(dǎo)致電壓紋波越大,所以為了減小紋波而將電容并聯(lián)使用。~(行驅(qū)動(dòng))的A、B、C、D4個(gè)引腳,~(列驅(qū)動(dòng))的OE、DAT0、CLK、ST4個(gè)引腳()。顯示模塊主要包括了16*16 LED點(diǎn)陣與行驅(qū)動(dòng)和列驅(qū)動(dòng)電路的連接方式。同理掃描第二列。l Q’H為串行輸出。其中16*16 LED點(diǎn)陣為4個(gè)8*8 LED點(diǎn)陣組合而成。A1,A3的行就作為16*16 LED點(diǎn)陣的行控線。便達(dá)到了兩片74ls138作為4線16線譯碼器輸出控制16*16 LED點(diǎn)陣16行的效果。74HC595為8位移位寄存器和一個(gè)儲(chǔ)存器,三態(tài)輸出功能。當(dāng)某一行(如第一行)引腳為高電平,某一列(如第一列)引腳為低電平,這對(duì)應(yīng)點(diǎn)(第一行第一列的點(diǎn))將被點(diǎn)亮,從而達(dá)到控制LED顯示屏的顯示信息。AMS11117有固定和可調(diào)兩個(gè)版本可用,輸出電壓可以是:,。基本特性:l 工作頻率在410440MHz頻段內(nèi)效果最佳(天線匹配),適合多節(jié)點(diǎn)的特殊場合;l 無線模塊空中速率最低1kbps,最高40kbps,可以軟件隨意設(shè)置;l UART(通用異步串行)接口,波特率支持最低1200,最高57600;l SX1212接收僅電流3mA,,10dbm條件下,發(fā)射電流僅25mA。如果你使用C語言編程,那么Keil幾乎就是你的不二之選,即使不使用C語言而僅用匯編語言編程,其方便易用的集成環(huán)境、強(qiáng)大的軟件仿真調(diào)試工具也會(huì)令你事半功倍。⑶仿真芯片的31腳(/EA)已接至高電平,所以仿真時(shí)只能使用片內(nèi)ROM,不能使用片外ROM;但仿真器外引插針中的31腳并不與仿真芯片的31腳相連,故該仿真器仍可插入到擴(kuò)展有外部ROM(其CPU的/EA引腳接至低電平)的目標(biāo)系統(tǒng)中使用。單片機(jī)與計(jì)算機(jī)進(jìn)行通信的方式是采用串口通信。單片機(jī)完成接收數(shù)據(jù)采用的是中斷方式,當(dāng)系統(tǒng)接收到數(shù)據(jù)后,產(chǎn)生中斷,然后將數(shù)據(jù)存入數(shù)組中,方便以后調(diào)用。第五章 系統(tǒng)測試試及問題分析第一節(jié) 硬件調(diào)試在設(shè)計(jì)的過程中,硬件調(diào)試環(huán)節(jié)非常重要。都及時(shí)檢查糾正了。程序的分塊調(diào)試一般在單片機(jī)開發(fā)裝置上進(jìn)行,可根據(jù)所調(diào)程序功能塊的入口參量初值編制一個(gè)特殊的程序段,并連同被調(diào)程序功能塊一起在開發(fā)裝置上運(yùn)行;也可配合對(duì)應(yīng)硬件電路單獨(dú)運(yùn)行某程序功能塊,然后檢查是否正確,如果執(zhí)行結(jié)果與預(yù)想的不一致,可以通過單步運(yùn)行或設(shè)置斷點(diǎn)的方法,查出原因并加以改正,直到運(yùn)行結(jié)果正確為止。LED 點(diǎn)陣也能夠顯示出正確的信息。 上位機(jī)程序發(fā)送窗口 LED點(diǎn)陣顯示屏顯示效果為了測試系統(tǒng)運(yùn)行的穩(wěn)定性,對(duì)其進(jìn)行了持續(xù)測試,讓LED顯示屏長時(shí)間保持顯示信息狀態(tài),系統(tǒng)除發(fā)熱外無其他異常情況。在調(diào)試的時(shí)候遇到很多的問題,經(jīng)過向老師和同學(xué)請教最后還是解決了。將近四年的大學(xué)生活即將結(jié)束。s Latin grammarians[J].Computers and the Humanities,1990, (5)[6] 藍(lán)厚榮.單片機(jī)驅(qū)動(dòng)LED數(shù)碼管的方法[J].電氣時(shí)代. 2008(04)[7] 周小燕.基于AT89S52單片機(jī)的信號(hào)產(chǎn)生電路的設(shè)計(jì)[J].科技風(fēng).2010(21)[8] Wang Y,Attebury G,Ramamurthy B.A survey of security issues in wireless sensor networks[J].2006[10] 張遠(yuǎn)山.PIC系列單片機(jī)與LCD接口實(shí)用技巧(二)[N].電子報(bào).20110911[11] 李紅艷.TFTLCD電源管理集成電路的研究設(shè)計(jì)[D].西安電子科技大學(xué) 2007[12] 王婷.基于嵌入式的LED顯示系統(tǒng)的研究與設(shè)計(jì)[D].西安科技大學(xué) 2008[13] W.Metzger.Photonic integrated transceiver for the access network[J].Optical and Quantum Electronics,1996,28[14] 許建勛.WLAN測試系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D].西安電子科技大學(xué) 2011[15] Ahmed N,Kanhere S S, Jha S.The holes problem in wireless sensor networks:a survey[J].ACM SIGMOBILE Mobile Computing and Communications Review,2005[16] 陳欣琳,王海峰,金亮.PC機(jī)和MCS51單片機(jī)間的串行通信[J].中國科技信息.2009(13)[17] 王夢.單片機(jī)與PC機(jī)的串行通信[J].科技資訊. 2007(06)[18] Inter. of single chip microputers user‘s manual[J].1981[19] 陳京培.AT89S52單片機(jī)實(shí)驗(yàn)系統(tǒng)的開發(fā)與應(yīng)用[D].江南大學(xué) 2007[20] 張普光.基于單片機(jī)的溫度控制器設(shè)計(jì)與研究[D].西安電子科技大學(xué) 2008[21] Comparison of echoenhanced ultrasound with fluoroscopic MCU for the detection of vesicoureteral reflux in neonates[J].200212 Springer[22] 諸昌鈐編著.LED顯示屏系統(tǒng)原理及工程技術(shù)[M].電子科技大學(xué)出版社, 2000[23] 任元會(huì).LED在室內(nèi)照明的應(yīng)用和前景[J].中國科技財(cái)富. 2010(07)[24] 廖志凌,阮新波.半導(dǎo)體照明工程的現(xiàn)狀與發(fā)展趨勢[J].電工技術(shù)學(xué)報(bào). 2006(09)[25] Barbara Hogenboom.Depoliticized and Repoliticized Minerals in Latin America[J].Journal of Developing Societies,2012,28(2)附 錄一、英語原文Sensors Dynamic Energy Management in WSNAbstract:A wireless sensor node is typically battery operated and energy constrained. Therefore, it is apparent thatoptimal energy management is one of the most important challenges in WSN development. However, energymanagement requires indepth knowledge and detailed insight concerning specific scenarios. After Carryingout a large number of experiments in precision agriculture, we find that it is the sensors that have never beenconcerned consuming the most energy of the node. In order to conserve energy and prolong the lifetime ofWSN, we design and carry out a dynamic energy management strategy for sensors. The basic idea is to shutdown all sensors’ power when not needed and wake them up when necessary. Valuable conclusions areextracted and analyzed.Keywords: WSN (Wireless Sensor Network), Precision Agriculture, Dynamic Energy Management, TinyOS1. Introduction A large number of intelligent microsensor nodes withsensing, processing and wireless municating capabilities form wireless sensor network (WSN), which pletes plicated tasks in some specific field, such as precision agriculture. Compared with old methods, WSN has significantly drawn extensive attention. It does not rely on fixed infrastructure and has many characteristics such as fast setup, strong survivability and so on [1]. It has been considered as a good scheme to conduct precision agriculture data collection and processing. In 2002,Intel has a project looking at how WSN can be used toimprove grape production. They worked with agricultural scientists on a longterm deployment of WSN in awine grape vineyard. By densely monitoring and analyzing they found the relationship between grape qualityand climatic conditions. It has been proved that WSNcould play a role in precision agriculture. Just the same as other applications, energy constraint of sensor nodes is the major problem for precision agriculture. Data aggregation [2] and low power listening [3]algorithms are effective method to reduce energy consumption in normal wireless sensor networks. However,after a sufficient number of experiments we found thatenergy consumption in precision agriculture has somespecial issues. Generally speaking, in order to monitorthe growth conditions of crops, one node has to connectwith many sensors, such as Co2 sensor, air temperature sensor, air humidity sensor, light sensor, soil temperature/moisture sensor and so on. Although the sensorsconsume a large portion of the energy, we never pay any attention to this issue in our previous research. It is necessary to reduce the energy consumption of design and carry out a sensor dynamic energy management (SDEM) to reduce energy consumption of sensors and extend network lifetime. The basic idea is to shut down sensors when not needed and wake them up when necessary [4,5]. The experimental results indicate that SDEM is an effective technique in reducing node energy consumption without significantly degrading performance. The remainder of this paper is organized as 2 gives the energy consumption of all parts of the sensors in precision agriculture. And we get a conclusion that the sensors consume most of the energy. The architecture of the SDEM is described in Section 3, and Section 4 r