【摘要】足球射門●OBACBACDEDEEODCBA⌒在同圓或等圓中,同弧或等弧所對的圓周角相等圖中還有沒有圓周角相等?CBA直徑所對的圓周角是直角作一條直徑,過直徑的兩個端點作一個圓周角CBA作一個90°
2025-11-21 08:31
【摘要】謝謝觀看Thankyouforwatching!
2025-06-14 12:04
【摘要】第2課時圓周角定理推論2與圓內(nèi)接四邊形學習要求1.理解圓周角的概念.2.掌握圓周角定理及其推論.3.理解圓內(nèi)接四邊形的性質(zhì),探究四點不共圓的性質(zhì).課堂學習檢測一、基礎(chǔ)知識填空1._________在圓上,并且角的兩邊都_________的角叫做圓周角.2.在同一圓中,一條弧所對的圓周角等于_____
2025-11-30 11:58
2025-06-14 12:05
【摘要】圓周角和圓心角的關(guān)系第三章圓第1課時圓周角和圓心角的關(guān)系導(dǎo)入新課講授新課當堂練習課堂小結(jié),會敘述并證明圓周角定理.能運用圓周角定理及推論解決簡單的幾何問題.(重點),會推理驗證“圓周角與圓心角的關(guān)系”.(難點)學習目標問題1什么叫圓心角?指出圖中的圓心角?頂點在圓心,角的
2025-06-18 03:06
【摘要】圓心角圓心角、圓周角?它的對稱軸是?垂徑定理的內(nèi)容是?我們是怎樣證明垂徑定理的?圓是軸對稱圖形,對稱軸是直徑所在的直線.垂徑定理是根據(jù)圓的軸對稱性進行證明的.,它會發(fā)生什么變化嗎?圓是中心對稱圖形嗎?它的對稱中心在哪里?它是不會發(fā)生變化的,我們稱之為“圓具有旋轉(zhuǎn)不變性”.圓是中心對稱圖形,它的對稱中心是圓
2025-11-09 19:29
【摘要】●OBACDE特征:①角的頂點在圓上.②角的兩邊都與圓相交.1、圓周角定義:頂點在圓上,并且兩邊都和圓相交的角叫圓周角.?●OBACDE溫故知新:圓周角定理?圓周角定理一條弧所對的圓周角等于它所對的圓心角的一半.?老師提示:
2025-11-28 21:28
【摘要】課題:圓周角和圓心角的關(guān)系課型:新授課年級:九年級教學目標:1.掌握圓周角定理的兩個推論,會熟練運用這兩個推論解決相關(guān)問題。2.掌握圓的內(nèi)接四邊形的概念及性質(zhì),并能加以熟練運用。3.通過實際問題的解決,體會建立數(shù)學模型解決實際問題的過程,養(yǎng)成用數(shù)學的思維方式思考問題的習慣.教學重點與難點:重點:
2025-11-30 12:44
【摘要】課題:3.4.1圓周角和圓心角的關(guān)系課型:新授課年級:九年級教學目標:1.理解圓周角定義,掌握圓周角定理.會熟練運用定理解決問題.2.培養(yǎng)學生觀察、分析及理解問題的能力.3.在學生自主探索定理的過程中,經(jīng)歷猜想、推理、驗證等環(huán)節(jié),獲得正確學習方式.培養(yǎng)學生的探索精神和解決問題的能力教學重難點:重
【摘要】九年級數(shù)學上冊(JJ)
2025-06-13 06:29
【摘要】圓周角九年級數(shù)學(上)第三章圓特征:①角的頂點在圓上.1、圓周角定義:頂點在圓上,并且兩邊都和圓相交的角叫圓周角.一、舊知回放:②角的兩邊都與圓相交.2、圓心角與所對的弧的關(guān)系3、圓周角與所對的弧的關(guān)系4、同弧所對的圓心角與圓周角的關(guān)系一、舊知回放:圓周角定理
2025-11-19 02:00
【摘要】第五課時課題§3.3.2圓周角和圓心角的關(guān)系(二)教學目標(一)教學知識點1.掌握圓周角定理幾個推論的內(nèi)容.2.會熟練運用推論解決問題.(二)能力訓(xùn)練要求1.培養(yǎng)學生觀察、分析及理解問題的能力.2.在學生自主探索推論的過程中,經(jīng)
2025-11-26 11:52
【摘要】 圓周角 第1課時圓周角(1) 【知識與技能】 ,會區(qū)分圓周角和圓心角. . 【過程與方法】 經(jīng)歷探索圓周角與圓心角的關(guān)系的過程,加深對分類討論和由特殊到一般的轉(zhuǎn)化等數(shù)學思想方法的理...
2025-04-03 02:38
【摘要】●OEFABC頂點在圓心的角叫圓心角.,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。.OBC憶一憶若圓心角的頂點位置發(fā)生改變,可能出現(xiàn)哪些情形?·····想一想在射門游戲中
2025-11-09 21:17