【正文】
ation as a polynomial of s and studying the coefficients. Although correct, this approach is unnecessarily abstruse. This system is the ideal rootlocus analysis example.Figure 1: Geometry of the inverted pendulum systemConsider the inverted pendulum system in Figure 1. At a pendulum angle of 181。 我們將提供讀者一個(gè)徹底的滑??刂祁I(lǐng)域的基礎(chǔ)并且適合大學(xué)生使用的經(jīng)典控制理論和一寫狀態(tài)空間方這種方法有兩個(gè)主要的優(yōu)點(diǎn):第一,系統(tǒng)的動(dòng)態(tài)性能適應(yīng)于開關(guān)方程的特殊選擇;第二,閉環(huán)響應(yīng)完全不受不確定的特殊種類的影響。決策規(guī)則,條件是開關(guān)方程,將輸入估計(jì)成正確的系統(tǒng)特性并且產(chǎn)生一個(gè)輸出精確的反饋控制器使之可以及工程師隨后我們將展示如何為系統(tǒng)設(shè)計(jì)一個(gè)模糊控制裝數(shù)空間的分割可以在控制器有區(qū)域勸導(dǎo)的常數(shù)參數(shù)中找到。結(jié)果在沒有超越傳統(tǒng)的控這是一個(gè)眾所周知的難題并且廣泛的在文獻(xiàn)中經(jīng)過處理。構(gòu)造好的和未構(gòu)造好的不確定因素是主要的興趣所在,也就是說模型的誤差導(dǎo)致參數(shù)變化和未模型化的模式這個(gè)學(xué)習(xí)的目的是倒立擺是最重要最經(jīng)典的控制工程問題中的一個(gè)。我們將描繪一個(gè)控制曲線當(dāng)使用模糊控制裝置時(shí)它與一個(gè)常規(guī)控制器是如何的不同。我們提出線形逆模糊化算法它能這個(gè)區(qū)域勸導(dǎo)仿射結(jié)構(gòu)和產(chǎn)生一個(gè)塊仿射控制事實(shí)上運(yùn)算法則是通過數(shù)值點(diǎn)實(shí)現(xiàn)的該數(shù)值點(diǎn)看作一組互助的協(xié)同操作的任務(wù),它是周期性的通過核心的活動(dòng),它執(zhí)行不同的計(jì)算。這個(gè)正確的力必須通過計(jì)算測(cè)量水平偏轉(zhuǎn)的瞬時(shí)值和擺的角度(獲得兩個(gè)電位計(jì))。檢查錄象提供的畫面來觀察倒立擺是如何確切物理上,擺桿會(huì)穩(wěn)定在離垂直方向的一個(gè)小角度,這樣它總是指向軌道的中心。考慮從到的閉環(huán)傳遞函數(shù)如圖3所示。沒有積分常數(shù)角誤差只能實(shí)現(xiàn)車的恒速運(yùn)動(dòng),但這不足以使擺桿直立。的為止仍然等于兩個(gè)(否則,漸近線將變成177。該傳遞函數(shù)有一個(gè)在右半邊,和我們對(duì)不穩(wěn)定系統(tǒng)所預(yù)期一致的極點(diǎn)。這個(gè)問題的第一個(gè)的解決方法是在Roberge[1]的一篇名為《機(jī)械密封》的論文中做出了描述。雖然正確,但這種做法是不必要的。使用規(guī)范化編號(hào),我們得到了如圖2所示的根軌跡圖。60176。該系統(tǒng)現(xiàn)在已經(jīng)的確穩(wěn)定了,但是,它的根軌跡仍非常接近jω軸。解決辦法就是在電機(jī)和補(bǔ)償器周圍加上正反饋。為了趕上倒下的擺桿,小車必須向右移動(dòng)(返回到中心)。這個(gè)支點(diǎn)是安在一個(gè)車架上,它的轉(zhuǎn)動(dòng)方向是水平的偏轉(zhuǎn)。為了實(shí)現(xiàn)它,嚴(yán)格的控制理論是必須的。如此倒立擺是非常有用的在決定是否一個(gè)特殊的時(shí)序安排的選擇比另一個(gè)好,在哪個(gè)情形下,在什么程度內(nèi)等等?!暗沽[、分析、設(shè)計(jì)和執(zhí)行”是由一個(gè)MATLAB方程和內(nèi)容的收藏的,還有SIMULINK模型,對(duì)分析倒立這個(gè)問題越來越復(fù)雜當(dāng)一個(gè)柔韌的帚代替一個(gè)剛硬的帚被使用。控制通常是基于一個(gè)系統(tǒng)的數(shù)學(xué)模型。滑??刂破?SMC)是基于變結(jié)構(gòu)控制使用的如果模型結(jié)構(gòu)中的錯(cuò)誤在已知的范圍內(nèi)躍進(jìn)。在實(shí)踐中通常大部分最差的案例在控制定律下執(zhí)行確沒有發(fā)生并且作為結(jié)果的大的控制輸入變得不必要和不經(jīng)濟(jì)的。 模糊控制裝置的實(shí)驗(yàn)的健全的性質(zhì)難以用理論去證明它們的綜合仍然是一個(gè)未解決的問題。在特殊情況下開關(guān)線將相平面分成最后,我們將討論在所謂堅(jiān)固的操縱方法的發(fā)展產(chǎn)生一個(gè)強(qiáng)烈的興趣此方法能設(shè)法解決這個(gè)問題。給定的區(qū)域是適用的。 滑模設(shè)計(jì)處理兩種結(jié)構(gòu)組成。因而發(fā)生的設(shè)計(jì)規(guī)程強(qiáng)調(diào)需要用90176。s Law guarantees that the time response of x(t) will grow without bound, and the cart will quickly run out of track.The solution is positive feedback around the motor and pensator. This feedback loop has the effect of moving the poles off the origin, thus preventing the pole/zero cancellations that are the source of this uncontrollable mode. The rootlocus plot of the corrected system appears in Figure 6.Figure 6: Rootlocus plot of pendulum with position pensationSiebert notes that this positive feedback causes the motor to initially make deviations in x(t) worse, but that this behavior is the desired effect. When balancing a ruler in your hand,to move the ruler to the right, you must first move your hand sharply to the left, pointing the ruler to the right, so that when you catch the ruler, you have moved both your hand and ruler to the right.Physically, the pendulum is stabilized at a small angle from vertical, such that it always points toward the center of the track. Thus, the pendulum is always falling toward the center of the track, and the only possible equilibrium is a vertical pendulum in the middle of the track. If the cart is to the left of the track center, the control will stabilize the pendulum pointing to the right, such that it then falls a little more to the right. To catch the falling pendulum, the cart must move to the right (back toward the center). That motion is the desired behavior!原文二:The inverted pendulumKey words: inverted ThetheThisthethehasof. the system parameters using measured data on the dynamics of the pendulum. Thedifficultisthecontrollers,usedand.mutuallycalledthatandusefulinon.systemtheofinputittofunctionsavariable structurelike controller. We will pare this regionwise affine controllerpendulumcurveastheproblemthe actualcontrollerto produce the required performance levels in practice despite such plant/modelinterestmethodstheoneControl Engineering. Broom Balancing (Invertedproblemplacecontrolatheflight.isimplementationtheUnstable System:inPrescribedmainIn this paper, the structured and unstructured uncertainties are of primary interest, .,delays,highstructureinaccuraciesattemptsthewellknownissuetheupperoftenpaperofslidingtheto thedynamicstoainremainstillfrom all(suchafuzzification stage.make upspace canparameters.ofofInphase planetheseen as a variable structure controller.assimilatedsuchbutwithadesigna controlconventional controllersusewellcontroller.thereplantinbyto produceplant/model mismatches. Thisdevelopment ofthis problem.isisSystemofTheitsandshouldmayhasof systemthis additional plexity into theofsysteminthese natural195039。issystemswitchingbehaviorswitching function.Thefor robustdirectly makes slidingmodefirstthatofattractive to the system state. Notediscontinuous.Wegroundingasasome knowledge ofproceduresaresuccessful practical application ofusedMatlab files.thisclassicalformodereaderlawwhichdesignofofthetheclearly makesresponse beesmaymain advantagesaandm