【摘要】題型一求線性目標函數(shù)的最值—截距型線性規(guī)劃問題的基本解法是圖解法,解好線性規(guī)劃問題的關(guān)鍵是畫好平面區(qū)域,找到目標點.例1若變量x,y滿足???????2x+y≤40x+2y≤50x≥0y≥0,求z=3x+2y的最大值.【分析】解答本
2025-08-05 15:24
【摘要】xyo山東省單縣一中劉允忠第一節(jié)二元一次不等式表示平面區(qū)域提出問題——引入新課解決問題——猜想證明典型例題分析與練習課堂小結(jié)與課外作業(yè)在平面直角坐標系中,點的集合{(x,y)|x-y+1=0}表示什么圖形?想一想?
2024-11-17 19:18
【摘要】
2024-11-12 16:41
【摘要】13452線性規(guī)劃在管理中的應用線性規(guī)劃問題的建模過程?1.理解要解決的問題,了解解題的目標和條件;?2.定義決策變量(x1,x2,…,xn),每一組值表示一個方案;?3.用決策變量的線性函數(shù)形式寫出目標函數(shù),確定最大化或最小化目標;?4.用一組決策變量的等式或不等式表示解決問題過程
2025-01-09 07:23
2024-11-12 18:09
【摘要】杭州市長征中學俞旭鋒永臨中學李利平一、新課引入問題1:集合{(x,y)|x+y-1=0}表示什么圖形?它表示的圖形是過點(0,1)和點(1,0)的直線。問題2:集合{(x,y)|x+y-10}表示什么圖形?全日制普通高級中學教科書數(shù)學第二冊(上)
2024-11-09 12:46
【摘要】線性規(guī)劃的實際問題制作者:李牧檢索:1標題2檢索3回憶4一題答5二題答6例題7列表8式子9畫圖10回答11步驟回憶???回憶???1什麼是線性規(guī)劃問題?
2024-11-10 03:13
【摘要】問題(三)例.要將兩種大小不同的鋼板截成A、B、C三種規(guī)格,每張鋼板可以同時截得三種規(guī)格的小鋼板的塊數(shù)如下表所示:A規(guī)格B規(guī)格C規(guī)格第一種鋼板211第二種鋼板123今需要A、B、C三種成品分別是15、18、27塊,問各截這兩種鋼板多少塊可得所需三種規(guī)格成品,且使所用鋼板張數(shù)最少.
2024-09-30 10:32
【摘要】2021/12/1二元一次不等式表示平面區(qū)域xyo,點的集合{(x,y)|x-y+1=0}表示什么圖形?想一想?{(x,y)|x-y+10}表示什么圖形?一、提出問題—引入新課xyo1-1x-y+10x-y+10x
2024-11-03 15:48
【摘要】非線性規(guī)劃?非現(xiàn)性規(guī)劃的基本概念定義如果目標函數(shù)或約束條件中至少有一個是非線性函數(shù)時的最優(yōu)化問題就叫做非線性規(guī)劃問題.一般形式:
2025-05-07 08:25
【摘要】運籌帷幄之中決勝千里之外運籌學課件整數(shù)線性規(guī)劃IntegerLinearProgramming1整數(shù)規(guī)劃n整數(shù)規(guī)劃問題與模型n整數(shù)規(guī)劃算法n計算軟件n應用案例2整數(shù)規(guī)劃問題
2025-01-21 23:17
【摘要】第2章對偶理論線性規(guī)劃續(xù)知識點?了解對偶問題的特點,熟悉互為對偶的問題之間的關(guān)系;?掌握對偶規(guī)劃的理論和性質(zhì),如可逆性、弱對偶性、對偶定理、互補松馳定理等;?掌握對偶單純形法;主要內(nèi)容?一、對偶問題的基本概念?二、對稱的對偶線性規(guī)劃?三、對偶的基本性質(zhì)?四、對偶單純形法一、對
2025-05-03 01:34
【摘要】第6章非線性規(guī)劃模型存貯模型生豬的出售時機森林救火?現(xiàn)實世界中普遍存在著優(yōu)化問題?靜態(tài)優(yōu)化問題指最優(yōu)解是數(shù)(不是函數(shù))?建立靜態(tài)優(yōu)化模型的關(guān)鍵之一是根據(jù)建模目的確定恰當?shù)哪繕撕瘮?shù)?求解靜態(tài)優(yōu)化模型一般用微分法靜態(tài)優(yōu)化模型存貯模型問題配件廠為裝配線生
【摘要】優(yōu)化建模拍賣與投標問題-例:藝術(shù)品拍賣問題招標項目類型12345招標項目的數(shù)量12334投標價格投標人192863投標人267915投標人378634投標人454321假設每個投標人對每類藝術(shù)品最多只能購買1件每個投標人購買
2025-04-29 01:40
【摘要】課題:線性規(guī)劃在實際生活中的應用教學目標:1.知識目標:會用線性規(guī)劃的理論和方法解決一些較簡單的實際問題;2.能力目標:培養(yǎng)學生觀察
2025-05-14 00:58