【摘要】第二章二次函數(shù)y=ax2+bx+c的圖象(一)一、學生知識狀況分析學生的知識技能基礎:學生在前面幾節(jié)課已經(jīng)學習過并能夠獨立作出一個二次函數(shù)的圖像,掌握了二次函數(shù)y=ax2和y=ax2+c的一般性質。學生活動經(jīng)驗基礎:在相關知識的學習過程中,學生已經(jīng)經(jīng)歷了二次函數(shù)y=ax2和y=ax2+c的性質的探索過程,在探究過程中體會到了
2024-12-09 08:13
【摘要】課題:二次函數(shù)的圖像和性質課型:新授課年級:九年級教學目標:1.通過學生自己動手列表、描點、連線,能夠正確作出二次函數(shù)y=a(x-h)2+k的圖象,提高學生的作圖能力2.通過觀察圖象能夠正確指出y=a(x-h)2+k的開口方向、對稱軸和頂點坐標,訓練學生的概括、總結能力3.理解二次函數(shù)
2024-12-08 05:07
【摘要】二次函數(shù)y=ax2+k圖象復習二次函數(shù)y=ax2的圖象是什么形狀呢?什么確定y=ax2的性質?通常怎樣畫一個函數(shù)的圖象?我們來畫最簡單的二次函數(shù)y=2x2的圖象。還記得如何用描點法畫一個函數(shù)的圖象嗎?x…-2-1012…
2024-11-21 00:05
【摘要】了解一頁書,勝于匆促地閱讀一卷書。
2024-12-07 22:58
【摘要】函數(shù)變量之間的關系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky§二次函數(shù)的定義?農場要建一個長方形養(yǎng)雞場,雞場一邊靠墻(墻長25m),另三邊用木欄圍成,木欄長40m。?(1)雞場的面積能
2025-06-14 18:02
【摘要】黑發(fā)不知勤學早,白發(fā)方悔讀書遲。
2024-12-08 03:10
【摘要】直線的方程y=kx+by-y0=k(x-x0)復習設疑1).直線的點斜式方程:2).直線的斜截式方程:直線經(jīng)過點P0(x0,y0),斜率為k斜率為k,直線在y軸上的截距為b當k不存在時,直線方程為:x=x0注意:
2024-11-18 13:33
【摘要】二次函數(shù)y=ax2的圖象和性質xy一.平面直角坐標系:1.有關概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內點的坐標:3.坐標平面內的點與有序實數(shù)對是:一一對應.坐標平面內的任意一點M,都有
2024-11-21 23:05
【摘要】二次函數(shù)的圖象與性質皖考解讀皖考解讀考點聚焦皖考探究當堂檢測考點考綱要求年份題型分值預測熱度二次函數(shù)的概念了解★二次函數(shù)的圖象和性質掌握2020選擇題4分★★★2020解答題5分2020選擇題4分2020解答題3
2024-11-22 00:36
【摘要】二次函數(shù)的圖像與性質一.拋物線y=ax2+bx+c(a≠0)的性質:a、b、c的代數(shù)式作用說明a1.a的正負決定拋物線開口方向;2.決定拋物線開口大小。a>0開口向_____a<0開口向_____b決定對稱軸的位置,對稱軸為直線a、b同號對稱軸
2025-07-18 06:24
【摘要】第二章二次函數(shù)1.二次函數(shù)所描述的關系1.二次函數(shù)的概念形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).2.列二次函數(shù)關系式列函數(shù)表達式的基本思路:(1)認真審題,弄清題中的自變量和因變量;(2)確定一共有幾個條件,每個條件和變量可以列出什么意義的代數(shù)式;(3)確定等量關
2024-12-08 14:25
【摘要】溫故而知新函數(shù)y=x2和y=-x2的圖像x262-2-4y=x2y=-x2圖像形狀開口方向對稱軸頂點坐標函數(shù)y=x2y=-x2拋物線拋物線向上向下y軸y軸(0,0)(0,0)
2024-11-30 08:35
【摘要】函數(shù)函數(shù)知多少變量之間的關系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新二次函數(shù)第二章二次函數(shù)某果園有100棵橙子樹,每一棵樹平均結600個橙子.現(xiàn)準備多種一些橙子樹以提高產(chǎn)量,但是
2024-12-07 21:22
【摘要】二次函數(shù)復習說一說:通過二次函數(shù)的學習,你應該學什么?你學會了什么?1、理解二次函數(shù)的概念;2、會用描點法畫出二次函數(shù)的圖象;3、會用配方法和公式確定拋物線的開口方向,對稱軸,頂點坐標;4、會用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實際問題及簡單的綜合運用。
2024-12-08 05:33
【摘要】章末熱點考向專題專題一恰當選擇確定二次函數(shù)表達式的方法求二次函數(shù)的解析式時,通常有三種設法:(1)一般式:y=ax2+bx+c;(2)頂點式:y=a(x-h(huán))2+k;(3)交點式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點的橫坐標.例1:已知二次函數(shù)圖象