【摘要】平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標表示1.平面向量基本定理的內(nèi)容?什么叫基底?a=xi+yj.有且只有一對實數(shù)x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-09 09:20
【摘要】學大教育個性化教學教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學輔導教案學科:數(shù)學任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【摘要】平面向量的概念及線性運算知識點:1.向量的有關(guān)概念名稱定義備注向量既有大小,又有方向的量統(tǒng)稱為向量;向量的大小叫做向量的長度(或稱模)平面向量是自由向量零向量長度為0的向量;其方向是任意的記作0單位向量長度等于1個單位的向量非零向量a的單位向量為±平行向量如果表示兩個向量的有向線段所在的直線平行或重合,則稱這兩個向量平行或
2025-06-26 04:22
【摘要】......海伊教育學科教師輔導講義學員編號:年級:九年級課時數(shù):學員姓名:張鴻敬輔導科目:數(shù)學學科教師:高
2025-04-17 01:00
【摘要】應(yīng)用創(chuàng)新演練第2章平面向量向量的坐標表示理解教材新知把握熱點考向考點一考點二考點三.2第一課時平面向量的坐標表示及運算知識點二知識點一
2024-11-18 09:32
【摘要】平面向量數(shù)量積的坐標表示、模、夾角一.復習回顧:問題:回憶一下,向量的數(shù)量積?又如何用數(shù)量積、長度來反映夾角?向量的運算律有哪些?平面向量的數(shù)量積有那些性質(zhì)?答案:babababa????????cos,cos運算律有:)()().(2bababa????????abba??
2025-01-20 04:59
【摘要】課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復習·課標版·A數(shù)學(理)課時作業(yè)課堂互動探究課前自主回顧與名師對話高考總復習·課標版·A數(shù)學(理)考綱要求考情分析本定理及其意義.2.掌握平面向量的正交分解及其坐標表示.3.會用坐
2025-07-24 07:57
【摘要】平面向量的坐標表示與運算OxyijaA(x,y)a1.以原點O為起點作,點A的位置由誰確定?aOA?由a唯一確定2.點A的坐標與向量a的坐標的關(guān)系?兩者相同向量a坐標(x,y)一一對應(yīng)復習回顧已知
2024-11-18 12:09
【摘要】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應(yīng)用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關(guān)長度、角度和垂直的
2025-05-19 17:09
【摘要】......平面向量基本定理及坐標表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,存在唯一一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-06-30 20:18
【摘要】空間向量的坐標運算——空間直角坐標系.空間向量的直角坐標運算.單位正交基底,空間直角坐標系,向量的坐標xyzO(x,y,z)ijkPP’OP=OP’+P’P=Xi+yj+zk啟示:空間向量OP=(x,y,z)Xiyjzk則),(2211
2025-08-16 01:22
【摘要】向量的減法baOaaaaaaaabbbbbbbBbaAa+b一、復習:1.向量加法法則:三角形法則baAaaaaaaaabbbBbaDaCba+b平行四邊形法則
2025-08-15 21:42
【摘要】第五單元平面向量與復數(shù)第一節(jié)平面向量的概念及其線性運算基礎(chǔ)梳理名稱定義表示法向量既有又有的量;向量的大小叫做向量的(或),向量_______模_________零向量長度為的向量;其方向是任意的
2024-11-12 18:19
【摘要】平面向量的線性運算一、選擇題1.若是任一非零向量,是單位向量,下列各式①||>||;②∥;③||>0;④||=±1;⑤=,其中正確的有()A.①④⑤ B.③ C.①②③⑤ D.②③⑤2.O是所在平面內(nèi)一點,D為BC邊上中點,,則()A. B. C. D.3.把平面上所有單位向量歸結(jié)到共同的始點,那么這些向量的終點所
2025-03-25 01:22
【摘要】ABC(2)飛機從A到B,再改變方向從B到C,則兩次的位移的和應(yīng)是:ABC(3)船的速度為,水流的速度為,則兩個速度的和是:ABC由此得什么結(jié)論?(1)一人從A到
2025-07-23 07:21