【摘要】空間中的垂直關(guān)系——線面垂直一、空間兩條直線垂直如果兩條直線相交于一點或經(jīng)過平移后相交于一點,并且交角為直角,則稱這兩條直線互相垂直。AB’C’CBA’D’DA’A┴ABC’C┴AB二、直線與平面垂直ABlAB如果一條直線AB
2025-11-09 12:11
【摘要】函數(shù)的應(yīng)用(一)學(xué)案【預(yù)習(xí)達標】1.形如f(x)=叫一次函數(shù),當為增函數(shù);當為減函數(shù)。2.二次函數(shù)的解析式三種常見形式為;;。3.f(x)=a+bx+c(a0),當a
2025-11-29 01:49
【摘要】解析幾何圓的標準方程圓的定義平面內(nèi)到定點的距離等于定長的點的集合。定點定長圓心半徑·rC圓的標準方程圓心是C(a,b),半徑是r,求圓的方程.xyOCM(x,y)設(shè)點M(x,y)為圓C上任一點,|MC|=r則P=
2025-11-08 17:33
【摘要】3.4不等式的實際應(yīng)用學(xué)習(xí)目標理.2.重點是不等式的實際應(yīng)用.3.難點是建立不等式問題模型,解決實際問題.課堂互動講練知能優(yōu)化訓(xùn)練不等式的實際應(yīng)用課前自主學(xué)案3.4課前自主學(xué)案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【摘要】1.已知正四棱錐底面正方形長為4cm,高與斜高的夾角為30°,求正四棱錐的側(cè)面積及全面積.(單位:cm2,精確到)32(cm2),48(cm2)2.已知正六棱臺的上、下底面邊長分別是2和4,高是2,則這個棱臺的側(cè)面積等于________187,主視圖是一個底邊長為8,高為
2025-07-26 02:48
【摘要】第1題.如圖,一艘船以mile/h的速度向正北航行.在A處看燈塔S在船的北偏東20的方向,30min后航行到B處,在B處看燈塔在船的北偏東65的方向,已知距離此燈塔mile以外的海區(qū)為航行安全區(qū)域,這艘船可以繼續(xù)沿正北方向航行嗎?
2025-11-06 21:17
【摘要】&一、均值不等式(基本不等式)abba??2均值定理:如果a、b∈N*,那么當且僅當a=b時,式中等號成立。算術(shù)平均數(shù)幾何平均數(shù)兩個正實數(shù)的算術(shù)平均值大于或等于它的幾何平均值。二、均值不等式的應(yīng)用不等式的證明2:,0???baabab求證例、已知????.9
2025-08-04 16:55
【摘要】觀察探索;一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標,炮彈的射高為845m,且炮彈距地面的高度h(單位:m)隨時間t(單位:s)變化規(guī)律為:h=130t-5t2近幾十年來,大氣層中的臭氧迅速減少,因而出現(xiàn)了臭氧層空洞問題.如下圖中的曲線顯示了南極上空臭氧層空洞的面積從197
2025-11-08 19:45
【摘要】第三章基本初函數(shù)(Ⅰ)糾錯筆記考點例析方法指南要點掃描1函數(shù)的單調(diào)性??????????10.20,.3,01.,.1yxxyxyxxxx???????????????,若函的象是平行于
2025-11-08 15:11
【摘要】一般地,如果??1,0??aaa的b次冪等于N,就是Nab?,那么數(shù)b叫做以a為底N的對數(shù),記作bNa?loga叫做對數(shù)的底數(shù),N叫做真數(shù)。定義:前課復(fù)習(xí)舉例:1642?????216log4?100102?2100log
2025-01-14 11:35
【摘要】平面幾何中的向量方法學(xué)習(xí)目標、垂直、相等、夾角和距離等問題.——向量法和坐標法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2025-11-10 20:38
【摘要】正弦定理和余弦定理沈陽二中數(shù)學(xué)組高中數(shù)學(xué)⑤B版正弦定理第一節(jié)思考:在直角三角形中,“邊”與“角”的關(guān)系Rt中ABC?222abc??sin,sinacAbcB??sinsinabAB?sin1C?sinsinsinabc
2025-11-08 11:59
【摘要】正弦定理正弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??sinsin1sin?CCcBbAasinsinsin??即正弦定理,定理對任意
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2025-11-10 19:09
【摘要】平面向量應(yīng)用舉例一.復(fù)習(xí)::.??ab||||cosθab(1)???aabb(2)()()()????????aaabbb(3)()??????aabccbc:(1)_________.??ab||_______
2025-06-06 00:18