【摘要】圓錐曲線的綜合問題直線和圓錐曲線問題解法的一般規(guī)律“聯(lián)立方程求交點,根與系數(shù)的關(guān)系求弦長,根的分布找范圍,曲線定義不能忘”.【一】.直線與圓錐曲線的位置關(guān)系(1)從幾何角度看,可分為三類:無公共點,僅有一個公共點及有兩個相異的公共點.(2)從代數(shù)角度看,可通過將表示直線的方程代入二次曲線的方程消元后所得一元二次方程解的情況來判斷.+By+C=0,圓錐曲線方程f(x,
2025-07-25 00:13
【摘要】圓錐曲線2020年理科高考解答題薈萃1.(2020浙江理)已知橢圓1C:221(0)yxabab????的右頂點為(1,0)A,過1C的焦點且垂直長軸的弦長為1.(I)求橢圓1C的方程;(II)設(shè)點P在拋物線2C:2()yxhh???R上,2C在點P處的切線與1C交于點,
2025-07-27 14:17
【摘要】Linsd68整理第1頁,共52頁2020年高考數(shù)學(xué)試題分類詳解圓錐曲線一、選擇題1.(全國1文理)已知雙曲線的離心率為2,焦點是(4,0)?,(4,0),則雙曲線方程為A.221412xy??B.221124xy??C.221106xy??D.2216
2025-08-13 04:32
【摘要】一、單選題(每題6分共36分)1.橢圓的焦距為。()A.5B.3C.4D82.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線的方程為()A.B.
2025-06-23 07:22
【摘要】WORD資料可編輯圓錐曲線橢圓專項訓(xùn)練【例題精選】:例1求下列橢圓的標(biāo)準方程: (1)與橢圓有相同焦點,過點; (2)一個焦點為(0,1)長軸和短軸的長度之比為t; (3)兩焦點與短軸一個端點為正三角形的頂點,焦點到橢圓的最短距離為。
2025-06-22 15:55
【摘要】......經(jīng)典例題精析類型一:求曲線的標(biāo)準方程 1.求中心在原點,一個焦點為且被直線截得的弦AB的中點橫坐標(biāo)為的橢圓標(biāo)準方程. 思路點撥:先確定橢圓標(biāo)準方程的焦點的位置(定位),選擇相應(yīng)的標(biāo)準方程,再利用待
2025-06-22 16:01
【摘要】圓錐曲線一、填空題1、對于曲線C∶=1,給出下面四個命題:①由線C不可能表示橢圓;②當(dāng)1<k<4時,曲線C表示橢圓;③若曲線C表示雙曲線,則k<1或k>4;④若曲線C表示焦點在x軸上的橢圓,則1<k<其中所有正確命題的序號為_____________.2、已知橢圓的兩個焦點分別為,點P在橢圓上,且滿足,,則該橢圓的離心率為,點在雙曲線上,則點到該雙
2025-06-24 02:10
【摘要】例一、中心在坐標(biāo)原點,焦點在x軸上的橢圓,離心率為,與直線x+y+1=0相交于M、N兩點,若以MN為直徑的圓經(jīng)過原點,求橢圓方程?! 〗猓河梢阎稍O(shè)橢圓方程為(ab0),又∵, ∴4c2=3a2,∴c2=a2,又a2=b2+c2,∴, ∴方程為即x2+4y2=a2, 由x+y+1=0有y=-x-1代入x2+4y2=a2中
2025-07-23 20:57
【摘要】解析幾何專題·經(jīng)典結(jié)論收集整理:宋氏資料2016-1-1有關(guān)解析幾何的經(jīng)典神級結(jié)論一、橢圓1.點處的切線平分在點處的外角.(橢圓的光學(xué)性質(zhì))2.平分在點處的外角,則焦點在直線上的射影點的軌跡是以長軸為直徑的圓,除去長軸的兩個端點.(中位線)3.以焦點弦為直徑的圓必與對應(yīng)準線相離.(第二定義)4.以焦點半徑為直徑的圓必與以長軸為直徑
2025-08-05 04:54
【摘要】《圓錐曲線定義》專題練習(xí)----QCL1.已知橢圓的兩個焦點為,,且,弦AB過點,則△的周長為()A.10 D.2.過雙曲線的右焦點F2有一條弦PQ,|PQ|=7,F1是左焦點,那么△F1PQ的周長為()B. C. D.3.為常數(shù),若動點滿足,則點的軌跡所在的曲線是()A.橢圓B.
2025-06-07 17:16
【摘要】專題十六圓錐曲線1.雙曲線的焦距是10,則實數(shù)的值是()A.B.4C.16D.812.橢圓的右焦點到直線的距離是()A.B.C.1D.3.若雙曲線的一條準線與拋物線的準線重合,則雙曲線的離心率為()A.
2025-08-18 17:18
【摘要】......學(xué)習(xí)參考 橢 圓典例精析題型一 求橢圓的標(biāo)準方程【例1】已知點P在以坐標(biāo)軸為對稱軸的橢圓上,點P到兩焦點的距離分別為和453,過P
2025-04-17 13:13
【摘要】......圓錐曲線離心率專題訓(xùn)練 1.已知F1,F(xiàn)2是橢圓的兩個焦點,若橢圓上存在點P,使得PF1⊥PF2,則橢圓離心率的取值范圍是( ?。.[,1)B.[,1)C.(0,]D.
2025-03-25 00:04
【摘要】......關(guān)于圓錐曲線的中點弦問題直線與圓錐曲線相交所得弦中點問題,是解析幾何中的重要內(nèi)容之一,也是高考的一個熱點問題。這類問題一般有以下三種類型:(1)求中點弦所在直線方程問題;(2)求弦中點的軌跡方程問題;
2025-03-25 00:02
【摘要】第九章 圓錐曲線的離心率問題解析幾何圓錐曲線的離心率問題離心率是圓錐曲線的一個重要幾何性質(zhì),一方面刻畫了橢圓,雙曲線的形狀,另一方面也體現(xiàn)了參數(shù)之間的聯(lián)系。一、基礎(chǔ)知識:1、離心率公式:(其中為圓錐曲線的半焦距)(1)橢圓:(2)雙曲線:2、圓錐曲線中的幾