【正文】
ize, pι , of the roadway designed was 4 m3 m. The material used to simulate rock consisted of sand, CaC03, cement and gypsum with a water content of 1/ 1 0 and a bulk density of about 1. 50 3/cmg . The bulk density of the original rock, pγ , was 2. 50 3/cmg , with a similarity constant of bulk density, γα , of 1. 67. The intensity similarity constant, tσα , was tσα = lα γα =33. 4. The model parameters and material ponent ratios are shown in Table l and the experimental model in Fig. 2. Fig. 2 Experimental simulation model Table 1 Model parameters and material ponent ratios 3. 3 Data monitoring Given the objective of the experiment, we needed to monitor the surface displacement of the roadway and forces acting on the bolt. The layout of the monitoring equipment is shown in Fig. 3. A displacement meter was placed on the surface of the roadway,with a bolt buried inside the rock in advance. Using a φ 1. 8 mm lead wire to simulate a bolt,a copper wire was attached to both ends of the lead wire , leading to the outside of the model and connected to the TS3890A programmable static resistance strain gauge. Measuring the electric signals of the lcad wire reflects the condition of the force to the lead: the larger the pulling force exerted on the lead wire, the thinner it bees and the larger the resistance, the smaller the electric current. Fig. 3 Disposition of the measurement device 4 Results and discussion Destruction of the rock surrounding a coal roadway Under the effect of different tectonic stresses, the state of destruction of the rock of the coal roadway is shown in Fig. 4. The result of the experiment shows that when the side pressure coefficientλ=0. 5, the rock extrudes into the roadway; there is a little dislocation between the strata in the roof and floor,but the rock remains plete. When λ=1. 0. the dislocation between the strata in the roof and floor increases, the soft stratum and the hard stratum above the roadway have separated and the roadway rock extrudes further inside the roadway. When λ=. the roof of the roadway gradually bees a shear failure area; when λ=2. 0, the soft strata of the roadway roof begin to fall, the floor also bees a shear failure area, while the dislocation between different strata bees more obvious. When λ=3. 0, the roof falling on the roadway curves upward and bees approximately an arch. Shear failure of the floor continues to enlarge, the dislocation between the strata increases。在頂板和底板地層滑動(dòng)時(shí),邊幫的煤礦順勢(shì)進(jìn)入巷道空間。最后頂板和底板的階層均形成剪切破壞區(qū),頂板錨桿失去它們的支撐功能并且逐漸脫落。那里是一個(gè)松散的錯(cuò)位造成的膨脹,導(dǎo)致圍巖變形。當(dāng)側(cè)壓力系數(shù) λ ,頂板逐漸下降,成為一個(gè)拱形,巷道頂部的測(cè)量點(diǎn)被破壞,地表位移難以測(cè)量。特別是煤層和第三層,煤之間的煤層的巷道形成了相當(dāng)大的距離。導(dǎo)線測(cè)量的電信號(hào)反映引導(dǎo)力的狀態(tài):較大的拉力施加的導(dǎo)線上,它變 得更薄和更大的阻力,電流變得較小。 液壓控制面板 液 壓 枕 計(jì)算機(jī) 液 壓 管 路 框 架 圖 1 真三軸巷道仿真實(shí)驗(yàn)平臺(tái) 、參數(shù) 為了反映直接和適當(dāng)?shù)南锏赖钠茐暮凸δ苣J降臉?gòu)造應(yīng)力影響的錨桿,我們用幾何相似常數(shù) lα 為 20 的模型,設(shè)計(jì)巷道的大小 pι 為 4 米 3 米。 加載系統(tǒng)由液壓泵,液壓控 制面板,液壓管道和液壓枕; 火焰 由隔板和位移傳感器,壓力傳感器,電路,一個(gè) T$3890A 可編程靜態(tài)電阻應(yīng)變儀和一臺(tái)電腦組成的測(cè)試系統(tǒng)。在我們的調(diào)查中,我們用相似模擬研究變形和破壞的頂板、底板和邊幫,以及機(jī)制和類型的煤巷錨桿支護(hù)時(shí)的水平構(gòu)造應(yīng)力。 結(jié)果表明 , 隨著水平構(gòu)造應(yīng)力 的 增加 , 地層在頂板 和 底 板的道路逐漸分開 ,并成為區(qū)域剪切破壞。 關(guān)鍵詞 : 構(gòu)造應(yīng)力 ; 煤巷 ; 錨桿支護(hù) ; 相似模擬 介紹 目前主要應(yīng)用于錨桿支護(hù)煤巷 。 1)、巖石巷道圍巖破壞的發(fā)展條件; 2)、頂板、底板和邊幫的地表位移; 3)、在頂板和邊幫的錨桿支護(hù)機(jī)理和錨桿應(yīng)力。本系統(tǒng)的主要參數(shù)和特點(diǎn)如下: 1)、 模擬火焰 的長(zhǎng)度,寬度和厚度分別為 , 和 米。模型參數(shù)和物質(zhì)成分比例列于表 l和實(shí)驗(yàn)?zāi)P蛨D 2 中。當(dāng)λ = 時(shí),頂板和底板之間的斷層有所增加。雖然在側(cè)墻煤炭的完整性保持不變,垂直頂板的圍巖和煤礦石之間的錯(cuò)位逐漸增加。側(cè)