【正文】
should be acmodated with corresponding training needs. The Process Seismic Data Interpretation Seismic data interpretation, as a process, transforms specific inputs into specific outputs. Formally, interpretation of data is the separator situated between the two as shown in Figure 1. Any person involved with the task of interpretation needs to be familiar with the specifics of the elements entering and leaving the core function of interpretation. The tools and methods of data analysis, the raw data that has been collected with seismic monitoring systems, and the skills and knowledge of those performing the interpretation are most relevant on the input side. On the output side, emphasis rests on the information type supplied to customers and the 1Safety in Mines Research Advisory Committee, S. Africa application of knowledge gained from data. Procedures need to ensure good munication, pliance with requirements and adequate response to the information received. Customers need to be petent in the use of seismic information. There are prehensive text books that deal with the hard and software ponents of mine based seismic systems, most notably Men decki (editor, 1997).Gibowicz amp。使我對礦井提升機(jī)的工作原理和機(jī)身結(jié)構(gòu)有了進(jìn)一步詳細(xì)的了解和認(rèn)識。 提升設(shè)備的電耗及效率計算 0 0 0 0 1 1 1 2 2 2 4 4 41 1 1 1( ) ( ) ( ) ( )2 2 2 23 2 1 1 .5 k N *XT F d t F F t F F t F F t F F ts? ? ? ?? ? ? ? ? ? ? ? ?? 式( ) 0333600 *16 .2 * 321 1 *10 360 0 * * 10 kW hXTmjdv FdtW??????? ? ? 式( ) 式中 d? —— 提升電動機(jī)效率,為 ; j? —— 減速器效率,取 。對時間微分,則在無窮小的時間里,電動機(jī)繞組發(fā)出的熱量為 : 2dq kIdt? 式( ) 當(dāng)電動機(jī)在拖動力矩 M 條件下工作時,那么單個提升循環(huán)所產(chǎn)生的熱量為: 1 2210T dq kI dt kI T??? 式( ) 式中 dT —— 提升系統(tǒng)一次工作循環(huán)時間; k —— 比例常數(shù); I —— 電動機(jī)定子繞組中通過的電流; dI —— 在等值力矩條件下工作時,提升電動機(jī)產(chǎn)生的等值電流。 煤礦主井 提升系統(tǒng)結(jié)構(gòu)圖如圖 21。以后,隨著礦井生產(chǎn)的發(fā)展和技術(shù)的進(jìn) 步,纏繞式提升機(jī)和摩擦式提升機(jī)又各有不同的發(fā)展。隨著時代的發(fā)展,后來又出現(xiàn)了電動機(jī)和電力拖動機(jī)。選擇出箕斗、提升鋼絲繩及天輪、單繩纏繞式提升機(jī)、電動機(jī)等,并進(jìn)行運(yùn)動學(xué)與動力學(xué)計算及礦井年產(chǎn)量驗(yàn)算。 運(yùn)動學(xué)相關(guān)計算 ...................................... 錯誤 !未定義書簽。 5 礦井提升機(jī)的拖動裝置 ...................................... 錯誤 !未定義書簽。 煤礦提升機(jī)選型計算 ..................................... 錯誤 !未定義書簽。 單繩纏繞式提升機(jī) .................................... 錯誤 !未定義書簽。通過已知條件合理計算選出箕斗、鋼絲繩、提升機(jī)、天輪、電動機(jī)等設(shè)備。 在設(shè)計中,必須掌握礦井提升設(shè)備的結(jié)構(gòu)、工作原理、性能特點(diǎn)、選擇設(shè)計、運(yùn)轉(zhuǎn)理論等方面的知識,以做到選型合理,正確使用與維護(hù),使之安全、可靠、經(jīng)濟(jì)的 運(yùn)轉(zhuǎn)。 箕斗的選擇設(shè)計 ......................................... 錯誤 !未定義書簽。 校核計算 ............................................ 錯誤 !未定義書簽。 電動機(jī)的計算轉(zhuǎn)速 .................................... 錯誤 !未定義書簽。 提升動力學(xué)相關(guān)參數(shù)計算 .............................. 錯誤 !未定義書簽。它 溝通礦井上下的紐帶 。尤其是近幾十年來,微電子和計算機(jī)控制技術(shù)的迅速發(fā)展,使得礦井提升機(jī)實(shí)現(xiàn)了全自動運(yùn)行,可以記錄運(yùn)行參數(shù)和各種生產(chǎn)指標(biāo)以及進(jìn)行數(shù)據(jù)綜合與處理,使得礦井提升設(shè)備與整個礦井系統(tǒng)緊密結(jié)合在一起,聯(lián)成一個自動運(yùn)行系統(tǒng)。 事物在不斷的發(fā)展,礦井提升設(shè)備也在不斷 的發(fā)展,其類型、結(jié)構(gòu)等都在日新月異地向前發(fā)展。它主要部件 有 單繩纏繞式 提升機(jī) 、鋼絲繩、提升容器、天輪等 。 電動 機(jī)拖動力矩 M 和電動機(jī)定子的電流有一定的關(guān)系,當(dāng)電動機(jī)接入電網(wǎng)電壓不變時,在單位時間內(nèi)電動機(jī)線圈內(nèi)產(chǎn)生的熱量為: dq kMdt? 式( ) 式中 M —— 電動機(jī)軸上的變化力矩。 1W 及提升設(shè)備的年電耗電 nW 8 1 *1000= kW h / tWWQ??? 式( ) * nsW W AkW??? 式( ) yW 336005940 *10 * 4803600 10 kW htyQgHW ??? ? ? 式( ) ? y 7 .9 2 4 2 .5 8 %1 8 .6WW? ? ? ? 式( ) 9 結(jié)論 煤礦礦井提升的選型設(shè)計是對將要開采的煤礦進(jìn)行一次提升系統(tǒng)的各個零部件的選擇設(shè)計,在現(xiàn)實(shí)生活在有很大的意義。通過這段時間的設(shè)計,使我能更加熟練的運(yùn)用機(jī)械設(shè)計方面的有關(guān)知識,更好的運(yùn)用 Auto CAD 軟件,以及查表和閱覽專業(yè)工具書籍的能力。 Kijko (1994) discuss theoretical concepts of seismic failure mechanisms, source quantification and elastic wave propagation, on a level that exceeds the requirements for nonseismologists. 16 Seismic data interpretation process (adapted from Oakland, 2021): Inputs (left) and out puts (right)。從事實(shí)來看,一個深層次的影響會產(chǎn)生。礦山地震學(xué)家有廣泛的定義:不考慮背景和正規(guī)培訓(xùn),任何能夠?qū)X?zé)管理地震系統(tǒng)和 /或分析和評價來自采礦作業(yè)的地震數(shù)據(jù)的人。 2021 年中, AngloGold 公司 (現(xiàn) AngloGoldAshanti) 已。在美國,地震學(xué)被認(rèn)為是地理學(xué)科的一部分。筆者這里介紹訓(xùn)練課程和與那些略述的關(guān)于南非的礦業(yè)工程顧問和一些礦井的內(nèi)容。 interpretation Risk Reduction 18 Fig. 2 The OSCAR cycle: The major elements of applied mine seismology. The answer to question three is usually dictated by the needs of the larger mining operation: Degree of urgency, legal requirements and budgetary constraints may play a role. The formulation of objectives under consideration of financial and other constraints is then followed by seismic system design and installation. Seismic system A seismic system consists of a bination of work hardware and software that allows the collection of seismic data, data processing for basic event parameters, and the creation of data bases from his data. The design of a suitable system is there for edirectly linked to the aims of monitoring: Requirements such as spatial coverage, spatial/temporal resolution, choice of suitable sensors, and the quantification of various aspects of seismicity must enable the generation of seismic information to meet these objectives. Selection of the system will naturally involve system suppliers, but an understanding of the following topic sensures an independent and informed decision by the advising rock engineer: * Physics of oscillation * Wave types * Wave propagation * Interfaces * Network types * Sensor types* Methods of data transfer * Network performance criteria * Product costs * Limitations of methods Particular the last item, which refers to limitations of methods to record ground motion, invert for seismic source parameters (location in time and space, seismic energy release, seismic moment, local magnitude etc.) and subsequently assign a physical interpretation to these parameters, needs to be understood by everyone involved in system selection. Calculation of source parameters and event locations is general